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As the main transportation mode of oil and gas, oil and gas pipelines play an irreplaceable role in energy trans-

portation. Metal magnetic memory detection technology can detect early stress concentration and invisible

damage, and can be detected under the action of the geomagnetic field, without the need to magnetize the pipe-

line in advance. Since the magnetic memory signal is relatively weak, the actual detected signal will be affected

by environmental noise, sensor jitter, and pipeline surface deposits. Therefore, the magnetic memory signal

needs to be denoised. In this paper, the translation invariant wavelet denoising method, which is improved

based on wavelet threshold denoising method, is used to denoise the collected pipeline magnetic memory sig-

nals. The experimental results show that the signal-to-noise ratio (SNR) obtained by this method is 4.97 %

higher than the unmodified wavelet threshold denoising, and 3.18 % higher than the SNR obtained by the par-

ticle swarm optimization wavelet threshold denoising.
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1. Introduction

When oil and gas pipelines are affected by the working

medium and the environment during processing and

manufacturing, factory pressure test or in the service

operation, stress concentration will be caused at the

defects of the pipeline [1, 2]. At present, Ultrasonic

Inspection, Magnetic Flux Leakage Detection, Radio-

graphic Inspection and other Nondestructive Testing

methods are often used to realize defect detection, but

these methods can only detect the macroscopic damage

that has occurred in oil and gas pipelines, and cannot

detect the defects caused by early stress concentration.

Metal magnetic memory detection technology can detect

early stress concentration and invisible damage, and can

be detected under the action of the geomagnetic field,

without the need to magnetize the pipeline in advance [3,

4]. In actual field applications, metal magnetic memory

signals are often interfered by external magnetic fields,

and the signals will be influenced with noise. In

particular, magnetic memory signals are relatively weak

and are easily interfered by noise or even submerged by

noise. In fact, the waveform of the detected magnetic

memory signal is quite different from the theoretically

derived waveform, and the characteristics of the magnetic

memory signal cannot be extracted, which greatly affects

the detection result. Therefore, the denoising processing

of the magnetic memory detection signal is particularly

important. The magnetic memory signal is a very weak

signal generated in the stress concentration area or defect,

which is slightly larger than the geomagnetic field; And

the generated magnetic memory signal has random non-

stationary characteristics, so it is necessary to find a

suitable denoising method to effectively process this

signal. Compared with other denoising methods, wavelet

analysis has the characteristics of multi-resolution analysis,

and can characterize the characteristics of magnetic

memory signals in both the time domain and the fre-

quency domain [5]. Therefore, wavelet transform can be

used to denoise the magnetic memory signal.

2. Method principle

2.1. Wavelet transform

For any function, its Fourier transform satisfies the

admissible condition [6, 7]:
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 (1)

Then  is a mother wavelet or base wavelet, and the

mother wavelet is stretched and translated to get:

 (2)

Where, a represents the contraction-expansion factor,

;  represents the translation factor, ,

and the wavelet basis function must meet the following

conditions [8]:

(1)  is unitized, that is, ;

(2)  is a bounded function, that is

;

(3) The average value of  is zero, that is,

.

Set the function , the wavelet transform of

this function is the inner product of f(x) and the wavelet

basis function [9]:

 (3)

Recovering from wavelet transform  to the

original signal is called inverse wavelet transform:

 (4)

If the contraction-expansion factor and translation

factor are discretized, a discrete wavelet function can be

obtained:

 (5)

From the discrete wavelet basis function, the discrete

wavelet transform can be obtained as:

 (6)

2.2. Wavelet threshold denoising

There are three classic methods for common wavelet

denoising methods: including wavelet threshold denoising

method, wavelet coefficient correlation denoising method

and modulus maximum method denoising. Among them,

wavelet threshold denoising has been widely used in the

field of signal and image denoising, which includes hard

threshold denoising and soft threshold denoising.

Suppose the one-dimensional signal is 

, where s(n) is the useful signal, e(n) is the noise

signal,  is the noise intensity, and f(n) is the noisy signal.

Perform discrete wavelet transform on 

. Because of the linear nature of wavelet

transform,  obtained after discrete wavelet transform

can be composed of two parts [10], as shown in formula

(7):

 (7)

Where  is the wavelet transform coefficient of the

useful signal s(n), and vj,k is the wavelet transform

coefficient of the noise signal.

The specific process of wavelet threshold denoising is

[11]:

(1) Choose a wavelet function, and determine the

decomposition layer number N of wavelet transform, and

perform discrete wavelet transform on the noisy signal

 to obtain the wavelet decomposi-

tion coefficient  of the noisy signal.

(2) Choose an appropriate threshold and threshold the

wavelet coefficients obtained in the first step.

(3) Finally, the wavelet coefficients obtained after

processing are reconstructed by the inverse wavelet

transform to obtain the denoised signal.

2.3. Particle swarm algorithm

Particles are used to simulate individual birds, and each

particle can be regarded as a potential optimal solution in

the N-dimensional search space. Particles have only two
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Fig. 1. Wavelet threshold denoising process.
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attributes: speed and position. Speed represents the speed

of movement, and position represents the distance of the

particle from the optimal solution. The flight process of

the particle is the optimization process of the individual,

and the flight speed and individual position of the

particles can be dynamically adjusted according to the

optimal position of the particle and the optimal position

of the swarm. The optimal fitness of each particle is

called the individual extremum, and the optimal fitness of

all particles in the swarm is called the group extremum

[12].

Assume that the search space of particles is D-dimen-

sional space, and the particle swarm is 

. Among them, the D-dimensional vector 

 of the i-th particle represents the position

of the particle and also represents a potential optimal

solution, and then the fitness value of each particle is

calculated according to the fitness function. The speed of

individual particles is a D-dimensional vector 

, the best fitness value of each particle, that is,

the individual extreme value is set to ,

and the group extreme value of all particles is

. In each iteration of the particle

swarm optimization algorithm, the particle updates its

position and speed by updating the single best position Pi

and the global best position Pg.

During each update iteration of the particle swarm

optimization algorithm, the speed and position of the

particles are updated based on the current individual

extreme and the group extreme. The speed update formula

and position update formula are formulas (8) and (9) [13]:

 (8)

 (9)

The most likely area to obtain the final optimal solution.

The first part of formula (8) is called the memory term,

which represents the influence of the magnitude and

direction of the previous speed; the second part of

formula (8) is called the self-cognition term, which is a

vector from the current point to the best point of the

particle itself, which means that the movement of the

particles comes from their own experience; the third part

of formula (8) is called the group cognition item, which is

a vector from the current point to the best point of the

population, reflecting the cooperation and knowledge

sharing between particles. Particles use their own experience

and the best experience of their companions to determine

the next movement. Based on the two formulas (8), (9), a

standard form of PSO is formed.

Among them, i represents the i-th particle, i = 1, 2, 3,...,

n; d = 1, 2, 3,..., D; k is the current iteration number; Vid is

the velocity of the particle; c1 and c2 are non-negative

constants, c1 reflects the influence of the best position in

the particle flight process on the particle flight speed, c2

reflects the influence of the best position in the entire

particle swarm on the particle flight speed; r1 and r2 are

random numbers between 0 and 1.

If the objective function is f(x), then the individual

extreme update formula of the particle is formula (10):

 (10)

The group extremum of the particle swarm is the

smallest fitness value among all particles.

The inertia weight  is added to the speed update

formula of the particle swarm algorithm, so that the

particle swarm algorithm has been further optimized. The

inertia weight is a non-negative constant, which can

balance the local search ability and global search ability

of the entire algorithm, and prevent the algorithm from

falling into the local optimum. The formula after adding

the inertia weight is shown in (11):

 (11)

The sym8 wavelet is selected as the wavelet basis

function, and the metal magnetic memory signal is

subjected to 5-layer wavelet decomposition. In the metal

magnetic memory denoising problem, the objective

function is the mean square error MSE of the signal. The

smaller the objective function value, the better the fitness

value:

 (12)

The specific steps of using particle swarm optimization

algorithm to optimize the wavelet threshold are as follows:

Step 1 Initialize the particle swarm, set the dimension

of the particle swarm to the number of wavelet decom-

position layers, and initialize the particle position and

velocity.

Step 2 Assign particles to each layer of high-frequency

wavelet coefficient denoising threshold in turn.

Step 3 Run the wavelet denoising program.

Step 4 Calculate the fitness value and use the mean

square error of the reconstructed signal as the fitness

function to calculate the fitness value of each particle.

Step 5 Evaluate the individual extreme and global

extreme of the particle. If the current fitness value is

better than the previous fitness value, replace the previous

fitness value.

Step 6 Update the speed and position of each particle.

If the termination condition or the maximum number of
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iterations is reached, stop the iteration to output the best

threshold, otherwise repeat steps 2-6.

2.4. Translation invariant wavelet denoising

After the wavelet threshold method denoises the metal

magnetic memory signal, it achieves better results, and

retain the characteristics of the original signal. However,

due to the localized characteristics of wavelet transform,

the denoised metal magnetic memory signal will appear

pseudo-Gibbs phenomenon at the discontinuous points

(singular points) of the signal, which will reduce the

denoising effect of the signal. Translation-invariant (TI)

wavelet denoising is a denoising method improved on the

basis of wavelet threshold denoising. This method can

suppress the pseudo-Gibbs phenomenon well; and can

improve the SNR of signal, reduce the mean square error.

The pseudo-Gibbs phenomenon is caused by the singular

point of the signal, therefore, the main principle of TI

wavelet denoising is to change the position of signal

discontinuities by the translation signal. Since a signal

may have many singular points, each singular point will

interfere with each other, therefore, perform n-cycle

translation on the signal with noise; then perform wavelet

threshold denoising on the translated signal; at last,

perform the opposite translation on the denoised signal to

obtain the denoised signal.

Assume that a noisy signal is , let Sh

represent the time-domain cyclic translation of h (h is a

positive integer) on the noisy signal, and the translated

signal [14, 15] is shown in the formula (13):

 (13)

T represents the wavelet threshold denoising, and the

signal after denoising is represented by . Let 

represent the reverse cyclic translation, 

represent the signal after wavelet threshold denoising, and

let . Then the TI wavelet denoising

can be expressed as formula (14):

(14)

Among them, Ave means averaging, and 

is the signal obtained after TI wavelet denoising

The TI wavelet denoising steps for metal magnetic

memory signals are as follows:

(1) Input the metal magnetic memory signal, and

calculate the translation amount h, h = 1, 2, ..., N, where

N is the signal length.

(2) Use sym8 wavelet basis function to decompose the

metal magnetic memory signal with wavelet, and translate

the low-frequency signal of each layer obtained after the

decomposition; put the coefficients obtained from each

level of decomposition into the TI list. When the next

level is decomposed, the coefficients in the table of TI are

updated until the last 5 levels of decomposition.

(3) Use a fixed threshold (Sqtwolog) for soft threshold

denoising.

(4) Reconstruction of metal magnetic memory signal.

At each decomposition layer, extract the wavelet coeffi-

cients in the TI table, and perform the inverse wavelet

transform reconstruction of periodic extension, the low-

frequency coefficients reconstructed from each layer update

the first column in the TI table until the final restructured

metal magnetic memory signal.

3. Signal Denoising Simulation

3.1. Wavelet threshold denoising

In actual field applications, metal magnetic memory

signals are often interfered by external magnetic fields,

and the signals will be doped with noise. In particular,

magnetic memory signals are relatively weak and are

easily disturbed by noise or even submerged by noise. In

fact, the waveform of the detected magnetic memory

signal is quite different from the theoretically derived

waveform, and the characteristics of the magnetic memory

signal cannot be extracted, which greatly affects the

detection result. Therefore, some random noise is added

to the magnetic memory signal for simulation.

In this paper, the pure signal obtained by simulation is

added to noise to obtain a noisy signal with a SNR of 5
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Fig. 2. (Color online) Reference signal: (a) Original standard signal; (b) noisy signal (SNR=5); (c) noisy signal (SNR=15).
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and 15 respectively, as shown in Fig. 2.

In order to obtain the optimal wavelet basis function,

the number of decomposition layers and the method of

threshold selection; The following methods are adopted:

first, the commonly used dubechies series wavelets and

symlets series wavelets, which are commonly used and

suitable for metal magnetic memory signals, are respec-

tively decomposed by 1 to 10 layers of wavelet, then

wavelet threshold denoising is performed, and finally

perform the reconstruction. Compare and analyze the

SNR of db2~db9, Sym2~Sym9 and different decomposition

layers, and select the wavelet basis function and de-

composition layer with the optimal denoising effect.

The simulation obtained by db2~db9, and the SNR with

the decomposition layer number of 1~10 is shown in Fig.

3 and Table 1. It is seen from the Figure that different db

wavelets correspond to different SNR. And as the number

of decomposition layers increases, the SNR will first

increase and then decrease.

It is seen from Fig. 3 that the denoising effect is best

when the wavelet basis function is db8 and the number of

decomposition layers is 5 layers.

The simulation obtains sym2~sym9, and the SNR with

the decomposition layer number of 1~10 is shown in Fig.

4 and Table 2. It can be seen from the Figure that different

sym wavelets correspond to different SNR. And as the

number of decomposition layers increases, the SNR will

first increase and then decrease.

It is seen from Fig. 4 that the wavelet basis function is

sym8 and the number of decomposition levels is 5, the

denoising effect is the best.

After experiment and simulation research, the useful

Fig. 3. (Color online) Denoising effect of db wavelet with different decomposition layers and vanishing moments: (a) Before

denoising (SNR=5); (b) Before denoising (SNR=15).

Table 1. The optimal denoising effect of db wavelet basis functions with different vanishing moments.

db2 db3 db4 db5 db6 db7 db8 db9

SNR=5 17.5407 17.9769 19.1048 19.5878 18.9004 19.7613 20.0054 19.5247

SNR=15 22.1068 24.3820 26.1292 26.5899 25.8333 26.6840 27.3073 26.5396

Fig. 4. Denoising effect of sym wavelet with different decomposition layers and vanishing moments: (a) Before denoising

(SNR=5); (b) Before denoising (SNR=15).
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signal of the metal magnetic memory signal is mainly

concentrated in the low frequency band, and the noise is

mainly high frequency noise. After denoising the magnetic

memory signal through the 2-layer and 3-layer decom-

position threshold, there is still noise component; after 4-

layer decomposition, there is almost no noise component.

When the number of decomposition layers is 5, the SNR

after denoising is improved. When the number of decom-

position layers is higher than 5 layers, the SNR will

decrease and useful components will be filtered out.

Therefore, the noise of the metal magnetic memory signal

is mainly concentrated in the results of the first 4 decom-

position scales. In this paper, the number of decomposition

layers is selected as 5 layers when performing wavelet

threshold denoising. For the selection of wavelet basis

function, it can be seen through simulation that, Whether

it is a metal magnetic memory signal with a SNR before

denoising SNR=5 or SNR=15, the sym8 wavelet basis

function has the best denoising effect, the highest SNR,

and the most similar to the original signal.

3.2. Particle swarm optimization wavelet threshold

denoising

The particle swarm optimization (PSO) algorithm is

used to optimize the wavelet threshold and then denoise

the noisy metal magnetic memory signal. The denoised

SNR and the mean square error of the signal are used as

indicators to measure the wavelet threshold denoising

effect of the PSO algorithm.

Because the number of decomposition layers is 5, the

particle dimension is 5; the particle swarm size is 100,

and the maximum number of iterations is 100; the learn-

ing factors c1 and c2 are both set to 2; the inertia weight 

is set to 0.6. Fig. 5 and 6 are comparison diagrams

between the optimized results and other threshold selec-

tion rules.

It is seen from Table 3 that among the commonly used

threshold selection rules, the general threshold selection

rule has the best denoising effect on magnetic memory

signals, while the PSO wavelet threshold denoising effect

is better, and the PSO wavelet threshold denoising method

Table 2. The optimal denoising effect of sym wavelet basis functions with different vanishing moments.

sym2 sym3 sym4 sym5 sym6 sym7 sym8 sym9

SNR=5 17.5407 17.9769 19.4145 19.6831 19.8796 20.0039 20.1177 19.6397

SNR=15 22.7517 25.1177 25.9371 26.3160 26.4192 26.7421 27.3234 26.4797

Fig. 5. (Color online) Denoising effect diagram of magnetic memory signal (SNR=5) with different threshold selection rules: (a)

PSO; (b) rigrsure; (c) heursure; (d) sqtwolog; (e) minimaxi.
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is better than the commonly used threshold method. This

method improves the SNR, but has little effect.

3.3. Translation invariant wavelet denoising

After the wavelet threshold method denoises the metal

magnetic memory signal, it can achieve better results and

retain the characteristics of the original signal. However,

due to the localized characteristics of wavelet transform,

the denoised metal magnetic memory signal will appear

pseudo-Gibbs phenomenon at the discontinuous points

(singular points) of the signal, which will reduce the

denoising effect of the signal. TI wavelet denoising is a

denoising method improved on the basis of wavelet

threshold denoising. This method can well suppress the

pseudo-Gibbs phenomenon; and can improve the SNR,

reduce the mean square error.

It is seen from Fig. 7 and Fig. 8 and Table 4 that the TI

Fig. 6. (Color online) Denoising effect diagram of magnetic memory signal (SNR=15) with different threshold selection rules: (a)

PSO; (b) rigrsure; (c) heursure; (d) sqtwolog; (e) minimaxi.

Table 3. SNR of different threshold selection methods after

denoising.

Wavelet threshold 

selection method

Before denoising 

(SNR=5)

Before denoising 

(SNR=15)

PSO optimized wavelet 

threshold denoising
20.1121 27.3237

rigrsure 15.3658 26.6456

heursure 20.0592 27.3230

sqtwolog 20.1117 27.3234

minimaxi 18.8655 26.9313

Fig. 7. (Color online) Comparison of denoising effects of three methods on noisy signals (SNR=5): (a) TI wavelet denoising; (b)

PSO wavelet threshold denoising; (c) Wavelet threshold denoising.
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wavelet threshold denoising has a higher SNR and a

smaller root mean square error than the wavelet threshold

denoising method. Among them, for the magnetic memory

signal with SNR=5 before denoising, the SNR is increased

by 3.04 %, and the mean square error is reduced by 6.80

%; for the noisy magnetic memory signal with SNR=15

before denoising, The SNR is increased by 0.09 %, and

the mean square error is reduced by 2.94 %.

The new threshold function with parameters can over-

come the shortcomings of the wavelet threshold function

denoising method, adjust the parameters to make it have

the advantages of both hard and soft threshold functions.

And add a smooth transition zone within the critical

threshold, which can retain a portion of useful high-

frequency signals during threshold processing, and can

better suppress the overkill of detail coefficients and

signal oscillation. For random noisy signals, the para-

meterized wavelet threshold function method based on

PSO optimization can be used to automatically optimize

the parameters of the threshold function, determine the

best wavelet basis function and the number of decom-

position layers, and obtain the best denoising effect. The

TI wavelet denoising method can better remove the

pseudo Pseudo-Gibbs phenomenon in signal denoising,

has better visual effects, and can reduce the root mean

square error between the original signal and the estimated

signal, and improve the signal noise In comparison, the

denoising effect on magnetic memory signals is also

better than the previous two denoising methods.

4. Metal Magnetic Memory Signal 
Experiment and Denoising

Where the defects and stresses of the pipeline are con-

centrated, a leakage magnetic field is formed. The state of

magnetic charge accumulation determines the direction of

the leakage magnetic field, and the internal magnetic

domain structure determines the strength of the leakage

magnetic field [16]. When the pipeline is under the com-

bined action of the geomagnetic field and the working

load, the magnetic domains inside the pipeline will be

irreversibly reoriented due to magnetostriction. The stress

concentration area forms a leakage magnetic field, the

tangential component p of the leakage magnetic field has

a maximum value, and the normal component s changes

sign and has a zero point [17-19]. The detection principle

is shown in Fig. 9.

The magnetic memory detection system includes fluxgate

sensor, signal processing circuit includes frequency select-

ing amplifier, phase sensitive detector, Analog-to-digital

converter A/D and CPU controller, and upper computer.

In magnetic memory detection, the quality of the sensor

and its range and characteristics are very important to the

detection results, and it is the most important part of the

instrument. In magnetic memory testing equipment, mag-

netic sensor is used to measure the size and distribution of

Fig. 8. (Color online) Comparison of denoising effects of three methods on noisy signals (SNR=15): (a) TI wavelet denoising; (b)

PSO wavelet threshold denoising; (c) Wavelet threshold denoising.

Table 4. Comparison of three denoising methods.

SNR 

before 

denoising

TI wavelet 

denoising

PSO wavelet 

threshold denoising

Wavelet threshold 

denoising

SNR SNR SNR

SNR=5 20.7236 20.1121 20.1117

SNR=15 27.5830 27.3237 27.3234

Fig. 9. (Color online) Principle diagram of magnetic memory

detection.
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magnetic field on the surface of pipeline to be tested.

The metal magnetic memory signal detection system

for oil and gas pipelines is shown in Fig. 10. Since the

magnetic memory signal is a weak magnetic field, the

strength of the magnetic field with the earth is an order of

magnitude, and the detection requires high accuracy. A

three-axis fluxgate sensor is used. The output of the

fluxgate sensor is mainly the fundamental wave signal

with the same frequency as the sensor excitation signal

and various harmonic components. The useful signal is

the second harmonic component, and the fundamental

wave and other harmonic components are noise signals.

Therefore, it needs to go through a frequency selective

amplifier circuit to amplify the second harmonic and

suppress the fundamental wave and other harmonic com-

ponents. The magnetic memory signal after the frequency

selective amplifier circuit still contains part of the

fundamental wave and other harmonic component noise,

so the phase-sensitive detection circuit is indispensable,

and the phase-sensitive detection circuit can almost com-

pletely eliminate other harmonic components. After the

previous frequency selective amplification and phase-

sensitive detection circuit, the magnetic memory signal

can’t be directly sampled. At this time, the signal is a

pulse signal, which is similar to a sawtooth wave. There-

fore, smooth filtering is required to smooth the signal and

filter out the pulsation component. Finally, it enters the

main control chip after A/D sampling, converts the

voltage signal into a magnetic field signal and sends it to

the host computer through the serial port.

When the metal magnetic memory signal is collected in

real time, the magnetic memory signal collected by the

two fluxgate sensors passes through the signal processing

circuit and is converted to the host computer after A/D

conversion. The host computer saves the original signal to

the corresponding folder. On the other hand, the magnetic

Fig. 10. (Color online) Magnetic memory detection system.

Table 5. Chemical composition of experimental pipeline (mass fraction, %).

Chemical 

composition
Mn Si C Cr Ni Cu P S

No. 20 steel 0.35~0.65 0.17~0.37 0.17~0.23 ≤ 0.25 ≤ 0.30 ≤ 0.25 ≤ 0.035 ≤ 0.035

Fig. 11. (Color online) Actual magnetic memory signal: (a) Actual tangential signal; (b) Actual normal signal.
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memory signal will be displayed in real time. If it

encounters obstacles or cannot continue to collect signals,

it will pause and mark the cause of the failure.

The pipe material used in this paper is No. 20 steel, and

its mechanical properties and chemical composition are

shown in Table 5:

In the research of quantitative inversion of defect size

based on metal magnetic memory, it is necessary to

obtain defect magnetic memory data of different sizes to

extract signal features for support vector machine training

and inversion. The pipe used in this experiment is a pipe

with a diameter of 80 mm and a wall thickness of 7 mm.

The defect is designed with a radius of 12 mm and a

depth of 5 mm.

The metal magnetic memory signal collected on site is

affected by probe jitter, measurement noise, pipeline

surface deposits, and external magnetic field interference,

and the signal is doped with noise. In fact, the waveform

of the detected magnetic memory signal is quite different

from the theoretically derived waveform, and the charac-

Fig. 12. (Color online) Magnetic memory signal after wavelet threshold denoising: (a) Tangential signal; (b) Normal signal.

Fig. 13. (Color online) Magnetic memory signal after PSO wavelet threshold denoising: (a) Tangential signal; (b) Normal signal.

Fig. 14. (Color online) Magnetic memory signal after TI wavelet denoising: (a) Tangential signal; (b) Normal signal.
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teristics of the magnetic memory signal cannot be ex-

tracted, which greatly affects the detection result. The

magnetic memory signal is shown in Fig. 11:

The result of ordinary wavelet threshold denoising is

shown in Fig. 12:

The result of PSO wavelet threshold denoising is shown

in Fig. 13:

The result of TI wavelet denoising is shown in Fig. 14:

It is seen from Table 5 that the TI wavelet denoising

has a better denoising effect on metal magnetic memory

signals than ordinary wavelet threshold denoising. The

SNR after denoising the tangential component of the

magnetic memory signal is improved by 2.07 % compared

with the PSO wavelet threshold denoising, and 4.28 %

higher than the wavelet threshold denoising. The normal

component is improved by 2.13 % than the PSO wavelet

threshold denoising, and 7.80 % higher than the wavelet

threshold denoising. The use of TI wavelet denoising can

improve the SNR of magnetic memory signals and obtain

more accurate signals.

5. Conclusion

Through the metal magnetic memory detection of oil

and gas pipeline defects, it was found that the detection

signal was seriously interfered by probe jitter, measurement

noise, pipeline surface deposits, and external magnetic

fields, which seriously affected the subsequent quantitative

analysis of defects. The detection signal was denoised by

using wavelet threshold denoising, PSO wavelet threshold

denoising, and TI wavelet denoising. The comparison

shows that the SNR of metal magnetic memory signal

denoised by TI wavelet is 4.97 % higher on average than

that of wavelet threshold denoising, and is 3.17 % higher

on average than that of PSO wavelet threshold denoising.
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SNR SNR SNR
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