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Accurate magnetic force calculation is essential to effectively analyzing a system or device containing magnets.

Among several approaches used in the interacting magnetic force calculation of permanent magnets, equiva-

lent magnetic charge and equivalent magnetizing current models are widely adopted. In this paper, we choose

cubes and cylinders as calculating objects to investigate the detailed calculation procedures. Higher calculation

accuracy of the equivalent magnetizing current model is verified by comparison between simulation and exper-

iment results. Furthermore, we analyze the relations between two models and discriminate their equivalence in

the magnetic force calculation respectively at both micro and macro scale. Reference basis for choosing a

proper model to calculate magnetic force is provided in this work, which is beneficial for the design of electro-

mechanical structures with permanent magnets. 

Keywords : permanent magnet, magnetic force calculation, equivalent magnetizing current, equivalent magnetic

charge

1. Introduction

Nowadays, considerable attention has been paid to the

electro-mechanical system and the robotic technology.

Magnets are widely used in electro-mechanical structures

like motors and relays. and some frontier researches such

as vibration energy harvesting system [1-4]. As a non-

contact force, magnetic force is appropriate for some

particular situations such as valves and pumps [5, 6].

Meanwhile, high energy densities of magnets are attractive

in micro-scale devices due to the nonlinearity of magnetic

force. Numerous researchers have been devoted to explor-

ing the dynamic character of the vibration energy harvest-

ing system in which magnets participate. In order to

improve energy harvesting efficiency, it is advantageous

to realize nonlinear bi-stable or multi-stable energy

harvester with magnetic force. To this end, the accurate

magnetic force calculation is of key importance for an

effective analysis of a system or device with magnets [7-

10].

Although there exist several approaches calculating

magnetic force between permanent magnets [11-14], how

to choose the most appropriate model still requires further

research. We focus on the two most popular and accessible

models based on the equivalent magnetic charge and the

magnetizing current [5, 15], respectively, to figure out

their differences and relations.

Experiments are firstly set up to measure the actual

forces between permanent magnets. Two typical shapes of

magnets, cuboid and cylinder, are chosen because of their

wide applications and easily manufacturing in commercial

realm [16]. We fully analyze magnetic force between

permanent magnets with both of these two theories,

equivalent magnetic charge and equivalent magnetizing

current. Expressions of magnetic force are demonstrated

in detail then. Comparison results indicate that the equi-

valent magnetizing current model has higher accuracy

than that of equivalent magnetic charge model. Further-

more, we investigate the relations between these two

models and their calculation equivalence are distinguished

at different scales. 
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2. Experimental Details

Before building models to calculate magnetic forces, an

experiment is designed to measure the actual position-

dependent magnetic forces between permanent magnets,

as shown in Fig. 1. Here, a pair of 10 mm × 10 mm × 2

mm N38H Nd2Fe14B cuboid magnets and a pair of Ф6

mm × 2 mm N38H Nd2Fe14B cylindrical magnets are

chosen to be the measured objects in the experiment. One

magnet of each pair is attached to the adjusted platform

and the other one to the dynamometer (HF-5). The like

magnetic poles are arranged face to face, which means

the axial repulsive magnetic forces exist between the

magnet pairs in this experiment. We adjust the screws to

simulate different relative positions of the magnets, while

recording the displacements and forces in the laser

displacement sensor (LK-G5001V) and dynamometer,

respectively, whose minimum resolutions are 0.001 mm

and 0.001 N. Parts of the obtained experimental data of

position-dependent interacting magnetic forces are shown

as dots in the figures of Tables 1 and 2 in Sec. IV. 

3. Magnetic Force Calculations

3.1. Equivalent magnetic charge theory

The equivalent magnetic charge theory is based on the

magnetic dipole model as its micro model. It states that

the magnetic charges gather in the surfaces of magnetic

poles. An unmagnetized permanent magnet has no mag-

netism at macro scale, because the magnetic dipolar

molecules are random in the magnet and the magnetic

dipole moments are offset by each other. Whereas a

magnetized permanent magnet has north and south poles

only on the two end faces, due to the organized arrange-

ment of interior magnetic dipolar molecules, where the

north and south poles link one after another along the

direction of magnetic field. It means that positive and

negative magnetic charges only distribute on the surfaces

of magnetic north and south poles, as shown in Fig. 2

[17]. The interactions between permanent magnets could

be equivalent to that among these magnetic charges, for

both produced magnetic field and acting magnetic force.

The equivalent magnetic charge model of permanent

magnet is obtained by solving the Maxwell equations

with the introduction of scalar magnetic potential [18].

The scalar magnetic potential equation of an arbitrary

point P in the magnetic field produced by a magnetic

dipole (charge) is , similar to the elec-

trical field produced by an electric charge, where

 is the magnetic dipole moment,  is a unit
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Fig. 2. Schematic drawing of the equivalent magnetic charge

model. (Same as cuboid magnet)

Fig. 1. (Color online) Magnetic force measurement system. (a)

axial force between cylindrical magnet pair, (b) lateral force

between cylindrical magnet pair, (c) axial force between

cuboid magnet pair, (d) lateral force between cuboid magnet

pair.

Fig. 3. Magnetic field of an arbitrary point in space produced

by a single magnetic dipole magnetized in the z-axis.
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vector of the vector r from the charge to the arbitrary

point P and 0 is permeability of vacuum. The expre-

ssions of magnetic field intensities can be derived from

the scalar magnetic potential.

3.1.1. Cuboid magnets

We use a coordinate system as shown in Fig. 3 with its

origin located at the core point of magnetic dipole. The

magnetic dipole pm is magnetized in the z-axis. The scalar

magnetic potential at an arbitrary point P(x, y, z) thus has

the following form:

. (1)

The magnetic field of a single charge at an arbitrary

point P(x, y, z) could be determined as H =  . So the

magnetic field intensities produced by one magnetic

charge in x, y, and z directions respectively are: 

. (2)

The force acting on a charge in the external magnetic

field is

F = pmH, (3)

where pmA = sAdqdt, and pmB = sBdhdw. A permanent

magnet is equivalent to a model of accumulated magnetic

charges, composing of a volume charge density v =

0dlvM and a surface charge density s = 0(n·M). The

volume charge density is zero for a magnet magnetized

uniformly with a constant M and the surface charge

densities are given by sA = 0MA and sB = 0MB [19].

The interacting force between two square magnetic pole

faces covered with positive or negative magnetic charges

is achieved by using twice surface integrals as

,

(4)

where hA, hB, wA and wB in the Eq. (4) denote the heights

and widths of two square magnetic pole faces; d is the

interval between the magnets; lA and lB are going to

denote the thickness of magnets, as shown in Fig. 4. The

magnets are placed in the way that their poles are faced to

each other.

Hence, the interacting force between cuboid magnets is

a sum of the contribution from both magnetic poles faces

of two permanent magnets.

. (5)

3.1.2. Cylindrical magnets

For a pair of cylindrical magnets, the basic theory of

equivalent magnetic charge is the same as that of cuboid

magnets above. 

We use relations y = r cos and x = r sin to transform

the Cartesian coordinate system to a cylindrical coordinate

system as shown in Fig. 5. The magnetic field intensity

produced by a single magnetic charge in three directions

can be written as: 
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Fig. 4. Schematic diagram of geometric dimensions and inter-

val between two cuboid magnets.

Fig. 5. Magnetic field of an arbitrary point in space produced

by a single magnetic dipole in a cylindrical coordinate system.
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. (6)

Similar to cuboid magnet’s force, the axial and lateral

interacted magnetic forces Fzmn and Frmn between two

circular magnetic pole faces covered with positive or

negative magnetic charges are also obtained by using

twice surface integrals,

,

(7)

where the indications of parameters , , θ, D and  are

shown in Fig. 6. In the equation of Frmn, the numerator

could be written as  or

, which represent magnetic

force in x or y direction respectively. They have the same

values after integral on account of the symmetry of a

circular section.

The interacting magnetic force between two cylindrical

permanent magnets is the sum of the contribution from

both circular magnetic pole faces, that is

, (8)

where d is the interval between magnets; lA and lB denote

the thickness of magnets, as shown in Fig. 7. Fz and Fr

represent the axial and lateral magnet force between

permanent cylindrical magnets, respectively.

3.2. Equivalent magnetizing current theory

The theory of magnetizing current believes that

magnetizing currents will exist inside the material and

also on its surface magnetizing currents after the

ferromagnetic material is magnetized in a magnetic field.

For a uniformly magnetized permanent magnet whose

magnetization intensity M is constant, its internal

magnetizing current density is , while the

surface magnetizing currents density is [20]

, (9)

where  is surface normal unit vector.

By using the Biot-Savart law, the magnetic induction

intensity B of an arbitrary point P in the space produced

by a current can be calculated as

, (10)

where the equivalent current I = SKm, S represents the

area of the surface where the current exists, L is the path

of integration, dl is the element of magnetizing current, r

represents the vector pointing to P from the current

element and 0 is the permeability of vacuum.

The system could be regarded as a model where one

magnet A of the pair is placed in the external magnetic

field produced by the other magnet B. 

3.2.1. Cuboid magnets

For a cuboid magnet, we establish a Cartesian coordi-
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Fig. 7. Schematic diagram of geometric dimensions and inter-

val between two cylindrical magnets.
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nate system as shown in Fig. 8. There is a current I along

x axis pointing to the negative direction. R denotes a

vector from the origin to the arbitrary point P(x, y, z).

That is

, (11)

L = wi, dL = dwi, (12)

, (13)

, (14)

. (15)

For ease of magnetic induction intensity calculation, the

coordinate system is established in which the magnet B is

chosen to be the original point, as shown in Fig. 9. The

direction of magnetization intensity MB is along the

axis z.

The surface magnetizing current  is

achieved from Eq. (9), where lB, wB and hB shown in Fig.

9 have the same meaning as that in Fig. 4. Then, through

transforming the coordinates and accumulating the mag-

netic field produced by the currents on the top, bottom,

front and back surfaces, the magnetic induction intensities

B of an arbitrary point P in x, y and z directions produced

by magnet B are respectively achieved as

,(16)

,(17)

,(18)

The magnet A has the same size as magnet B, repre-

sented as lA, wA and hA shown in Fig. 10. The magnetic
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force can be equivalent to Ampere force of magnetizing

currents on magnet A's surfaces [21].

. (19)

Figure 10 shows the positions of magnetizing currents

on the surfaces of magnet A in the coordination system.

The coordinates on the centers of the top, bottom, front

and back surfaces are respectively ,

,  and ,

where  and d is the interval between

two magnets.

Consequently, the interacting magnetic force between

two cuboid magnets is

. (20)

3.2.2. Cylindrical magnets

For a pair of cylindrical magnets, the basic theory of

equivalent magnetizing current to calculate the interacting

magnetic force is the same as cuboid magnets. There are

circular current loops around the outermost cylindrical

surface. Figure 11 shows the coordinate system in which

the magnetic field is generated by a circular current loop.

According to Biot-Savart law, the magnetic induction

intensity B from a circular current loop is calculated as

follows:

, (21)
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. (25)

Therefore, the magnetic induction intensity of an

arbitrary point P(x, y, z) in space produced by cylindrical

magnet B is derived by Eq. (21)-(25) and has the

following form: 
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Fig. 10. The positions of magnetizing currents on the surfaces

of magnet A in the coordinate system.

Fig. 11. Coordinate system of magnetic field produced by a

circular current loop.
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where , l = rB
denotes the radius of magnet B, and lB is the thickness of

magnet B.

Consequently, the magnetic force between cylindrical

permanent magnets can also be treated as the Ampere`s

force. The coordinate system is shown in Fig.12 and the

expressions of the force is achieved as:

,

(27)

where d still denotes the interval between permanent

magnets. 

4. Simulation and Comparison

In order to test and compare the magnetic force calculation

accuracies of the two models, we simulate the interacting

axial and lateral forces when one magnet is moving over

another along the x-axis. The lateral force`s direction

defined in this paper is the same as the moving direction.

(In this paper, we only use symmetrical permanent magnets

with square or circular pole face, so the directions of the

movements and definition of the lateral force in y-axis

will bring about the same result.) Besides, the displacement

of the moving magnet is defined as zero when the

projections of the pair of magnets coincide, as shown in

Fig. 13, where magnet A is fixed and magnet B is

movable. Next, we compare experimental measurements

in Sec. II with the simulated axial and lateral magnetic

forces as a function of the displacement x. 

Table 1 shows the comparison between measured data

in Sec. II and simulation results from two calculation

models for magnets of two shapes in Sec. III. In the

simulation, the sizes of magnets are referred to the real

magnet’s sizes in Sec. II, the interval d  is set as 3 mm,

the permeability of vacuum . The AF

and LF in labels of figures are abbreviation for the axial

magnetic force and lateral magnetic force.

It should be noted that the magnetizations intensities M

are independent of integrals comparing different calculation

expressions of magnetic force models, which means it

could be put in the head or end of the formula as con-

stants for uniformly magnetized permanent magnets. The

value of magnetization intensity makes no difference in

the general shape of simulation curve as a function of any

abscissa parameter x or d because of the linear relation-

ship between magnetization intensity and interacting

magnetic force. It only influences the magnitude of mag-

netic forces. 

Therefore, we assign the values of magnetization based

on empirical criterions in the former researches and

literatures to make the most of measured values consistent

with the curves.

Concretely, we calculate the variances of absolute error

between every simulated and measured value with different

magnetization intensity. By comparing the variances: 

, (28)

we confirm the final magnetization intensity’s value when

the variance is minimum. The Fi in the Eqn. (28) repre-

sents the absolute error of every force’s value and is given

by , where Fei, Fsi and N represent the

measured value, simulated value and the quantity of the
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Fig. 13. (Color online) Schematic of the magnets moving state

in the experiment and simulation. (a) cuboid magnets. (b)

cylindrical magnets.
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values which contains both axial and lateral forces. The

minimum variance means the best agreement between

experiment and simulation with the achieved magneti-

zation intensity. The values of magnetization assigned in

above several cases are different and marked in the

figures of tables.

Then, we calculate the average relative errors:

, (29)

excluding values of magnetic force smaller than 0.05N,

which cannot be measured because of the zero-drift error

of the dynamometer in the experiment. The results of

each case are also marked in the figures. It can be proved

that the accuracy of the equivalent magnetizing current

model is higher than that of magnetic charge model with

the average relative errors achieved.

In order to further verify the higher advantageous

performance of the equivalent magnetizing current model,

the interacting axial magnetic forces with several different

intervals between magnets are simulated and measured

when the projections of magnets coincide. The figures in

Table 2 compare the experimental measurements with

simulated axial magnetic forces as a function of the

interval d. In a similar way, the average relative errors and

magnetization intensities are also marked. The values of

magnetization intensity are same as those of the cases in

Table 1.

Here in Table 2, the calculation results of equivalent

magnetizing current model also coincide well with that of

experiment. No matter with visual judgement or com-

parison between average relative errors calculated and

marked in the figures, the calculation accuracy of equi-

valent magnetizing current model is further proved to be

much higher than that of equivalent magnetic charge

model.

5. Analysis on the Equivalence between 
Two Models

Some researchers have mentioned the equivalence of

the magnetic charge model and magnetizing current

model and given their verification [17, 22]. But this equi-

valence is only studied at the micro scale. Considering the

distribution of magnetic field produced by one magnetic

dipole and a micro magnetizing loop current, or the acting

force in the field, the expressions of the two models have

the same form. We have calculated the magnetic field

intensity produced by one magnetic charge as Eq. (2).

The magnetic induction intensity produced by a micro

1

N

i

i ei

r

F

F
E

N




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Table 1. Comparison of simulation results of two calculation models with the experiment data (displacements along x-axis change).

Equivalent magnetic charge model Equivalent magnetizing current model

Cuboid magnets

Cylindrical

magnets
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coil (magnetizing loop current) is , where Ω

represents the solid angle subtended by the micro coil to a

point P(x, y, z) in the space, and  as

shown in Fig. 14. Therefore, the magnetic induction

intensities in three directions are achieved as following

form:

. (30)

Hereinbefore we have mentioned pm = mS, and I = m/S

in the Eq. (30) could be understood as the magnetic

moment per unit area. The Eq. (2) and (30) are equal to

each other while the relations are established like

, (31)

. (32)

Equivalent magnetizing current model states that mag-

netization intensity M is the average molecular magnetic

moment of the unit volume  [23].

 Similarly, the acting force of a micro coil is given by

Ampere’s force F = K × B using the magnetizing current

model, where  has been mentioned in Eq. (9).

For the magnetic charge model, the acting force of a

charge is F = pmH, see Eq. (3). The equality of the acting
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Fig. 14. The coordinate system of the field produced by a

micro coil.
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force expressions could also be derived as same as the

field expression using the relations of Eq. (31) and (32)

[14].

In most cases of the magnetic force calculation, the

permanent magnets are, however, at the macro scale. As

this paper shows, the theory of equivalent magnetizing

current states that there are macro currents distributing

only around the outermost loop, while the internal currents

are offset by each other. Therefore, the calculation method

is a kind of line integral of the current path if the thick-

ness of the magnet is a constant. Whereas the theory of

equivalent magnetic charge believes that the calculation

method is a kind of surface integral of the magnetic pole

faces, because the positive and negative magnetic charges

distribute uniformly on the magnetic pole surface of

permanent magnets. Hence, these two models by which

the magnetic force between macro permanent magnets is

calculated have no equivalence on account of different

integral paths in the calculation as demonstrated in Sec.

Ⅲ. From micro to macro models, there exist different

amplifications per radius or side length of magnets between

cross section area (surface integral path) and perimeter

(line integral path) of magnets. The cross-section area is a

quadratic function of radius or side length, whereas peri-

meter is a linear function. That is the reason why the

calculation results of two models are different at the

macro scale.

6. Conclusion

Taking magnet pairs of two kinds of typical shapes for

examples as calculation objects, this paper detailedly

demonstrates the procedures of interacting magnetic force

calculations between permanent magnets with two popular

methods, magnetic charge model and magnetizing current

model. It is affirmed that the equivalent magnetizing

current model has higher accuracy. Moreover, we prove

that there is no equivalence existing between magnetic

charge model and magnetizing current model in the case

of permanent magnets with macro volumes because of

different integral paths, although equivalence exists between

a single magnetic charge and a micro current loop for the

calculation of magnetic field and force. 

Furthermore, the method based on the equivalent mag-

netizing current theory can be used to calculate magnetic

field and force of magnets with any shapes. The basic

principle is uniform except for different integral paths.

Hence, lots of applications could refer to our work to

solve the problems on magnetic force calculation, such as

magnets in bearings, motors and some sensors, which are

suggested for the future research.
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