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In blood, the concentration of red blood cells varies with the arterial diameter. In the case of narrow arteries,

red blood cells concentrate around the centre of the artery and there exists a cell-free plasma layer near the

arterial wall due to Fahraeus-Lindqvist effect. Due to non-uniformity of the fluid in the narrow arteries, it is

preferable to consider the two-phase model of the blood flow. The present article analyzes the heat transfer

effects on the two-phase model of the unsteady blood flow when it flows through the stenosed artery under an

external pressure gradient. The direction of the artery is assumed to be vertical and the magnetic field is

applied along the radial direction of the artery. Blood is considered as a non-Newtonian Casson fluid with uni-

formly distributed magnetic particles. Both the blood and magnetic particles are moving with distinct veloci-

ties. This two-phase problem is modelled using the Caputo-Fabrizio derivative approach and then solved for an

exact solution using joint Laplace & Hankel transforms. Effects of pertinent parameters such as Grashoff num-

ber, Prandtl number, Casson fluid parameter and fractional parameters, and magnetic field on blood velocity

and particle velocity have been shown graphically for both large and small values of time. Both velocity pro-

files increase with the increase of Grashoff number and Casson fluid parameter and reduce with the increase of

magnetic field and Prandtl number. The behaviour of temperature is studied for different values of the frac-

tional parameter. 

Keywords : two-phase blood flow, magnetic particles, heat transfer, fractional derivative, Joint Laplace and Hankel

transforms

1. Introduction

Biomagnetic fluid dynamic (BFD) is an interesting area

of research and have extraordinary applications in bio-

engineering and medical sciences. The kinematics and

dynamics of the body fluid in human, animals and plants

are described by BFD. In humans, hemodynamics deals

with the body fluids. Modern BFD measures and analyzes

local time-dependent velocities and flow in blood vessels

[1-3]. The interest in this field includes the development

of using magnetic particles as drug carriers and cancer

tumour treatment using magnetic hyperthermia, reduction

of bleeding during surgeries, construction of magnetic

tracers and magnetic devices for cell separation [4-8].

Mostly, BFD problems are nonlinear, therefore, a limited

number of analytical solutions are available and most

such problems are studied numerically [9-15]. 

To examine the biomagnetic fluid flow under the external

applied magnetic field, the formulation of mathematical

model plays a crucial role. The BFD model was proposed

by Haik et al. [16] for the investigation of biomagnetic

fluid flow. This model is similar to one of the Ferro

hydrodynamics (FHD), and the biological fluids are

considered as electrically non-conducting magnetic fluid

(Ferrofluids), however, blood exhibits high electrical con-

ductivity [17].

The BFD comprises for the discussion of non-New-

tonian fluids, like blood. Blood is the most suitable

biomagnetic fluid and it behaves like a magnetic fluid

[18, 19]. The magnetic behaviour of the blood is due to

the complex intercellular protein interaction, cell membrane

and haemoglobin, and they are formed of iron oxides,
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while the magnetic property of the blood is affected from

the oxygenation state [20]. Blood behaves as diamagnetic

material when it is oxygenated; however, when it is

deoxygenated, it behaves like paramagnetic material [21].

Blood can be viewed as a suspension of magnetic particles

in non-magnetic plasma [22, 23]. As blood is a suspen-

sion of red blood cells in plasma, it carries on a non-

Newtonian behaviour, but many researchers have studied

the blood flow in arteries either Newtonian or non-

Newtonian [24, 25]. At the point when blood moves

through larger arteries at higher shear stress, it shows

Newtonian behaviour but in smaller arteries at lower

shear stress, it shows non-Newtonian behaviour [26]. But

blood may behave as a non-Newtonian fluid in particular

situation as discussed in [27-29].

The non-Newtonian example of blood is Casson fluid

[30]. More exactly, Casson fluid is a shear thinning liquid

which is assumed to have an infinite viscosity at zero

rates of shear, the yield stress at which flow is impossible

[31]. For a mathematical model of blood flow through

narrow arteries at lower share stress, Casson fluid model

has been discussed by many researchers [32]. Charm and

Kurland [33] investigated in their experimental discoveries

that the Casson fluid model could be the best illustrative

of blood when it flows through narrow arteries at lower

shear rates and that it could be connected to human blood

at an extensive variety of Hematocrit and shear rates.

Merrill et al. [34] found that the Casson fluid model

verifies sufficient flow behaviour of blood in cylindrical

tubes with the diameter of 130-1000 μm.

Blood is treated as an MHD fluid which helps to

control the blood pressure and has likely corrective use in

the infection of heart and vein. Measurements have also

been performed for the estimation of the magnetic

susceptibility of blood which was found to be 3.5 × 10−6

and −6.6 × 10−7 for the venous and arterial blood, respec-

tively [35]. Experiments have been performed using a

relatively weak magnetic field 1.8 Tesla and low temper-

atures (75-295) K [36]. Strong magnetic fields 8 Tesla

were also used on a living rat and the consequence was

the reduction of the blood flow and the temperature of the

rat [37]. Also, experiments have shown that for a mag-

netic field of the same strength 8 Tesla, the flow rate of

human blood in a tube was reduced by 30% [38]. Use of

electromagnetic field in biomathematical research was

first given by Kolin [39]. Afterwards, Barnothy and

Sumegi [40] revealed that the organic frameworks are

influenced by the utilization of an external magnetic field.

Haldar et al. [41] concentrated on the impact of externally

applied homogeneous magnetic field on the stream qualities

of blood through a single constricted blood vessel in the

presence of erythrocytes.

An extensive amount of work on the two-phase flow of

fluids and their mathematical models have been discussed

by many researchers to investigate the interaction and

behaviour of the flow. Cokelet & Goldsmith [42] discuss-

ed the two-phase flow of blood through small tubes at

low shear stress compared the experimental results with

the predicted steady two-phase flow model. Recebli and

Kurt [43] investigated unsteady flow along a horizontal

glass pipe in the presence of the magnetic and electrical

fields and got analytical solutions by Laplace and

D’Alembert method. Gedik et al. [44] studied numerically

the unsteady viscous incompressible and electrical con-

duction of two-phase fluid flow in circular pipes with

external magnetic and electrical fields. The magnetic field

decreases the velocity of both fluid phases, whereas the

electrical field alone has no any impact on two-phase

flow. Sharan et al. [45] numerically discussed the two-

phase model for flow of blood in narrow tubes with

increased effective viscosity near the wall.

Recently, many researchers have used the fractional

derivatives for the solution of different problems, while in

past the classical derivatives were used in mathematical

formulations of problems and the idea of fractional

derivatives was ignored due to its complexities [46-48].

Abro et al. [49] used the concept of fractional derivative

to convection flow of MHD Maxwell fluid in a porous

medium over a vertical plate. Abro et al. [50] discussed

the dual thermal analysis of the magnetohydrodynamic

flow of nanofluids via fractional derivative approach.

Shah et al. [51] extended the work of [52] by applying the

Caputo’s time fractional derivative to study the magnetic

particles on blood flow. Ali et al. [53] extended the work

of [51] by utilizing Caputo’s time fractional derivative to

discuss the Casson fluid model for blood flow in a

horizontal cylinder. Recently, Ali et al. [54] extended the

work of [53] by using new fractional derivative known as

Caputo-Fabrizio time fractional derivative to discuss the

flow of magnetic particles in blood with Isothermal

heating. 

Based on the above discussion, this article aims to

study the effect of the external applied magnetic field on

two-phase blood flow of fractional Casson fluid in a

vertical stenosed artery with isothermal heating. The mixed

convection has produced by the external pressure gradient

and buoyancy forces. The joint Hankel and Laplace

transformation have been used for the exact solutions of

the blood velocity, magnetic particle velocity and for the

temperature, as the fluid flow is through the cylindrical

tube. The effects of different fluid parameters have been

discussed graphically for both the velocities and temperature.
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Nusselt number has been calculated and shown in tabular

form.

2. Statement of the Problem

The magnetic blood flow is considered in a vertical

stenosed artery of radius R0 taken along the z-axis. The

magnetic particles are uniformly distributed throughout

the fluid. The blood flow is along the z-axis and is due to

the oscillating pressure gradient and buoyancy forces

caused by the convective heat transfer. The applied

magnetic field is taken in a transverse direction to the

blood flow as shown in Fig. 1.  The blood flow is

originated due to the sudden jerk of the artery and the

magnetic particles are also moving with a specific velocity

. Due to the small Reynolds number the

 induced magnetic field has been neglected [55]. At the

time t = 0, the fluid (blood), particles and cylinder are at

rest and the temperature is ambient . At the time t =

0+, the fluid and particle start motion with velocity U0 and

the temperature rises from ambient to wall temperature

Tw.

The flow model can be well described with Navier-

Stokes equations, Newton’s second law of motion and

Maxwell’s relations which explain the fluid flow and

particles motion. The Maxwell equations of the electro-

magnetic field can be defined as

 (1)

where μ0 is the magnetic permeability,  is the current

density,  is the electric field and  is the magnetic

field. The density of the electric current can be given by

Ohm’s law 

 (2)

σ is the electrical conductivity,  is the electric field

intensity,  is the magnetic flux density,  is the velocity

vector. The electromotive force Femag can be expressed as 

 
(3)

where  is the unit vector along z-direction and

 is the velocity of blood along the axis of the

circular cylinder.

 The unsteady Casson fluid flow of blood in an

axisymmetric cylinder [53] is given by:

 (4)

the oscillating pressure gradient is given by [53] 

 (5)

where w(r, t) is the blood velocity, w1(r, t) is the particle

velocity, ρ is the density of the fluid, ν is the kinematic

viscosity,  is the Casson fluid parameter, μB

is the plastic dynamic viscosity, τr is the yield stress of

fluid, πc is the critical value of this product based for the

non-Newtonian model, K is the Stokes constant, N is the

number of magnetic particles per unit volume, σ is the

electrical conductivity, B0 is the applied magnetic field.

The term  is the force between the

fluid and particle due to relative motion, g is the

gravitational acceleration, βT is the coefficient of thermal

expansion, T is the temperature of the fluid,  is the

ambient temperature, Q0, Q1 are the amplitudes of the

systolic and diastolic pressure gradient, The flow of

magnetic particle is conducted by Newton’s second law

of motion [53]:
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Fig. 1. (Color online) Schematic diagram.
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 (6)

where m represents the mass of the magnetic particles.

The energy equation is given by [54]:

 (7)

where 

with respect to the following physical initial and boundary

conditions:

 
(8)

where K is the Stokes constant.

By using the dimensionless variables 

 (9)

into equations (4-8) after dropping the * sign, we obtain:

(10)

 (11)

 (12)

 (13)

 ,

where P
c
 is the non-dimensional parameter for the

particle concentration, P
m
 is the particles mass parameter,

M is the magnetic parameter, Gr is the Grashof number

and Pr is the Prandtl number.

In order to convert classical time derivative to Caputo-

Fabrizio fractional time derivative the equations (10-12)

reduce to:

 (14)

 (15)

 (16)

where Caputo Fabrizio time fractional derivative is

defined as

3. Solution of the Problem

The Joint Laplace and Hankel transform have been

used to find the exact solutions for the fractional partial

differential equations. 

3.1. Calculation of temperature

By applying the Laplace transform to equation (16), we

get

 (17)

where  and 

Now applying the Hankel transform of order zero and

using the transformed condition we get

 (18)

where

 ,

J0(rn) is the Bessel function of zero order of first kind &

r
n
, n = 0, 1, ...... are the positive roots of the equation

[56].
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(18), we get:

 (19)

Now applying inverse Hankel transform to equation

(19), we get:

 (20)

3.2. Calculation of the velocity
By applying the Laplace transform to equations (14) &

(15), we get

(21)

 (22)

where 

Now applying the finite Hankel transform of order zero

to equations (21) & (22), by a famous result [57],

we get:

 (23)

  (24)

Incorporating the transformed condition 

equation (23) becomes

  (25)

By incorporating equation (24) into equation (25), we get:

 (26)

equation (26) can be written in simplified form by

letting ,
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Applying inverse Laplace transform to equation (30),

we get

 (31)

Finally applying the inverse Hankel transform to

equation (31) by using the famous result [54]

we get:

(32)

Equation (24), will be written in more systematic form

by taking, 

 (33)

Now by applying inverse Laplace transform to equation

(33), using the known result of Lorenzo & Hartley

function [58] 

we get

 (34)

finally applying inverse Hankel transform of order zero to

equation (34), we get

 (35)

3.3. Rate of Heat transfer

Nusselt number measures the rate of heat transfer from

the surface of the cylinder to the fluid. The Nusselt

number in dimensionless form is given by:

.  (36)

The expression of Nusselt number can easily be obtained

by incorporating equation (20) into equation (36). Hence,

the numerical results (using Mathcad) are computed from

equation (36) and are given in Table 1. 

From the above table, it can be concluded that for short

interval of time and increasing values of α the heat

transfer rate decreases while for large interval of time the

heat transfer rate increases.

4. Graphical Results and Discussion

The impact of different fluid parameters on temperature

θ(r, t), blood velocity w(r, t) and particle velocity w1(r, t)

has been discussed graphically by using the computa-

tional tool Mathcad. The physical sketch of the problem

is shown in Fig. 1. In Fig. 2 the effect of the fractional

parameter α at temperature has been discussed for

different values of time. In Fig. 2(a) time is taken t = 0.1

and it is clearly be observed that at center of the cylinder,

for higher values of α the classical fluid temperature is

higher than the fractional fluid temperature while it has a

reverse effect on the fluid temperature near the walls of

the cylinder, and in Fig. 2(b) time is taken t = 1 and from
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Table 1. Nusselt number variation due to time and fractional
parameter α).

t α Nu

0.1 0.2 2.438

0.1 0.5 2.383

0.1 0.7 2.302

0.1 0.9 2.165

1 0.2 2.604

1 0.5 2.902

1 0.7 3.159

1 0.9 3.491
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Figure it’s clearly be seen that for higher values of α the

classical fluid temperature is lower than the fractional

fluid temperature while it has a reverse effect on the fluid

temperature near the walls of the cylinder. The graphs for

blood velocity as well as for magnetic particle velocity

are shown in Figs. 3-6. All these graphs are studied for

the fractional parameter α. In Fig. 3 and Fig. 4, the effect

of magnetic parameter M has been discussed for short and

Fig. 2. (Color online) Temperature graph for different values of α  when Pr=22.64.

Fig. 3. (Color online) Velocity graph of Blood and Particles for different values of M for short time, when Q0=0.3, Q1=0.3,

P
m

=0.2, P
c
=0.2, β = 1, , Pr=22.64, Gr=10.ω  = 

π

2
---
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larger interval of time. From both figures, it can be

concluded that with increasing magnetic parameter both

the velocities (blood velocity and particle velocity)

decrease. Physically, it is true because blood is an

electrically conducting fluid and exhibits magnetohydro-

dynamic flow characteristics so with the potential of

MHD the Lorentz force arising out of the flow across the

magnetic lines of force acts on the constituent particles of

blood and alters the hemodynamic indicators of blood

flow, such type of use of magnetic field results in the

prevention of blood flow, but in Fig. 3 it can be seen that

for short interval of time the fractional velocity is greater

than the classical velocity, while in Fig. 4 for large

interval of time the classical velocity is greater than the

fractional velocity. In Fig. 5, 6 the Grashoff number effect

has been shown for both velocities (blood velocity and

particle velocity) with respect to short and large interval

of time. From both figures it can be observed that by

increasing the Grashoff number both the velocities

increases due to the increase in the buoyancy term

because, Grashoff number represents the ratio between

the buoyancy force due to spatial variation in fluid density

(caused by temperature differences) to the restraining

force due to the viscosity of the fluid. But for short

interval of time, the fractional velocity is greater than the

classical velocity as shown in Fig. 5 while in Fig. 6 the

classical velocity is greater than the fractional velocity for

a large interval of time. In Fig. 7, 8 the effect of Casson

fluid parameter has been shown on both the velocities. By

increasing the Casson fluid parameter both the velocities

increases due to the fact that when the Casson fluid

parameter increases so the yield stress fall through which

the boundary layer thickness decreases. In Fig. 7 the

fractional velocity is greater than the classical velocity for

short interval of time, while in Fig. 8 the classical

velocity is greater than the fractional velocity for a larger

interval of time. 

Fig. 4. (Color online) Velocity graph of Blood and Particles for different values of M for large time, when Q0=0.3, Q1=0.3,

P
m

=0.2, P
c
=0.2, β = 1, , Pr=22.64, Gr=10.ω  = 

π

2
---
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Fig. 5. (Color online) Velocity graph of Blood and Particles for different values of Gr for short time, when Q0=0.3, Q1=0.3,

P
m

=0.2, P
c
=0.2, β = 1, , Pr=22.64.ω  = 

π

2
---

Fig. 6. (Color online) Velocity graph of Blood and Particles for different values of M for a large time, when Q0=0.3, Q1=0.3,

P
m

=0.2, P
c
=0.2, β = 1, , Pr=22.64.ω  = 

π

2
---
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Fig. 6. (Color online) Continued.

Fig. 7. (Color online) Velocity graph of Blood and Particles for different values of β for short time, when Q0=0.3, Q1=0.3, P
m

=0.2,

P
c
=0.2, β = 1, , Pr=22.64.ω  = 

π

2
---
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5. Conclusion

• The blood flow of non-Newtonian Casson fluid with

heat transfer has been discussed in narrow and small

capillary vessels. These vessels were considered in the

form of a cylindrical tube.

• The Caputo Fabrizio time fractional derivative has used

for the solution of the problem.

• The impacts of the external magnetic field and other

flow parameters on fluid velocity in the cylindrical

domain have been shown.

• Closed form solutions have been obtained by using the

Joint Laplace and Hankel transforms.

• The velocities increase with an increase in the Grashoff

number. 

• External applied magnetic field M reduces the velocity of

the fluid as well as the velocity of particles and controls

turbulences.

• By increasing the Casson fluid parameter β both the

velocities increases.
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Nomenclature

p : Oscillating pressure gradient

Q0 : Amplitude of the systolic pressure gradient

Q1 : Amplitude of the diastolic pressure gradient

w : fluid velocity in -direction (m/s);z′

Fig. 8. (Color online) Velocity graph of Blood and Particles for different values of β for a large time, when Q0=0.3, Q1=0.3,

P
m

=0.2, P
c
=0.2, β = 1, , Pr=22.64.ω  = 

π

2
---



− 190 − Hemodynamic Flow in a Vertical Cylinder with Heat Transfer: Two-phase Caputo Fabrizio Fractional Model
…

− Farhad Ali et al.

r : Radial axis

μB : Plastic dynamic viscosity

Gr : non-dimensional Grashoff number

kf : thermal conductivity of base fluid (Wm−1K−1);

R0 : Radius of the cylinder

U0 : Characteristic velocity

τr : Yield stress of fluid

μ : dynamic viscosity of fluid (kg m−1 s−1);

πc : Critical value of the product based non-Newtonian

model;

T fluid temperature (K);

βT : thermal expansion coefficient of base fluid (K−1);

: Ambient temperature

Tw : Wall temperature 

μ0 : magnetic permeability

υ : dynamic viscosity coefficient of base fluid;

β : Casson fluid parameter;

ρ : Density of the fluid

M : non-dimensional magnetic parameter;

ω : Angular frequency

Pr : non-dimensional Prandtl number;

B0 : applied magnetic field;

g : acceleration due to gravity (m s−2);

: current density

β : Casson fluid parameter;

 : electric field

 : magnetic flux density

 : velocity vector

σ : electrical conductivity

w1 : magnetic particle velocity 

K : Stokes constant

N : number of magnetic particles per unit volume

Pc : non-dimensional parameter for the particle con-

centration
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