## Synthesis and Characterization of Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub>

## Kwang-Rok Mun and Young-Min Kang\*

Department of Materials Science and Engineering, Korea National University of Transportation, Chungju 27469, Korea

(Received 30 May 2018, Received in final form 8 June 2018, Accepted 12 June 2018)

Structural and magnetic properties of Ni-Zn ferrites, Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub> (x = 0.2, 0.25, 0.3, 0.35, 0.4, 0.6, 0.8) prepared by solid-statereaction process were investigated. Single cubic spinel phase were confirmed by X-ray diffraction (XRD) analysis for all the samples. Although no clear dependence of x on the microstructure were found, the magnetic properties significantly varied with x. Paramagnetic behaviors shown in the samples of  $x \le 0.25$  changed to ferromagnetic behaviors with increasing x ( $x \ge 0.3$ ). The saturation magnetization ( $M_S$ ) increased up to the highest value of 78.3 emu/g at x = 0.6 and then turned to decrease at x = 0.8. The complex permeability spectra (1 MHz  $\le$  1 GHz) of the samples ( $x \ge 0.3$ ) shifted to high frequency direction with increasing x in accordance with Snoek's law. This is mainly due to the increase of ferromagnetic resonance frequency induced by the increase of crystalline anisotropy.

Keywords : Ni-Zn ferrites, solid-state-reaction, M-H curve, complex permeability

# Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub>의 합성 및 자기적 특성

#### 문광록 · 강영민\*

한국교통대학교 화공고분자신소재공학부, 충주시 대학로 50, 27469

(2018년 5월 30일 받음, 2018년 6월 8일 최종수정본 받음, 2018년 6월 12일 게재확정)

Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub>(*x*=0.2, 0.25, 0.3, 0.35, 0.4, 0.6, 0.8)를 고상반응법(solid-state reaction)으로 합성한 후 Ni 치환량(*x*)과 소결 온도에 따른 결정구조 및 미세구조, 그리고 자기적 특성 변화를 체계적으로 연구하였다. 전 조성 *x* 범위에서 단상의 spinel 페라 이트 상이 합성되었고, *x*의 변화에 따라 미세구조 상 두드러진 변화는 없었으나 자기적 특성은 크게 변화하였다. *x*≤0.25 범위에 서는 상자성체에 가까운 자화거동을 보이다가 *x*≥0.3부터 강자성체의 자화거동으로 변화하였다. 이후 *x*의 증가에 따라 포화자화 값이 증가하여 *x*=0.6에서 78.3 emu/g의 가장 높은 포화자화 값을 나타내고 *x*=0.8에서 소폭 감소하였다. 복소투자율의 고주파 특성(1 MHz ≤ 1 GHz)은 *x*=0.3에서 *x*=0.8까지 증가함에 따라 투자율의 실수부, 허수부의 최대값은 각각 감소하면서 복소투자율 spectra가 전체적으로 고주파 방향으로 이동하였다. 이는 Ni 치환량(*x*)이 증가함에 따라 결정자기이방성 상수(*K*)가 증가하여 강자 성 공명 주파수가 증가하기 때문으로 판단된다. 소결 온도를 1150 °C에서 1250 °C로 증가시켰을 때 소결 밀도가 증가하고 결정 립이 성장하면서 투자율은 전 조성 범위에서 각각 증가하고 복소투자율 spectra는 저주파 방향으로 변화하였다.

주제어 : Ni-Zn 페라이트, 고상반응법, 자기이력곡선, 복소투자율

## I.서 론

연자성 페라이트 소재는 산화철계 세라믹스로 직접 회로, 센서, 고주파 통신 소자 등 전자 부품으로 다양한 응용 분야 를 가지고 있으며 지난 수십 년간 학계와 산업계에서 꾸준히 연구와 개발이 이루어져 왔다[1-5]. 그 중 입방정계 스피넬 (cubic spinel) 구조를 갖는 Ni-Zn Ferrite는 높은 투자율과 우수한 절연 특성으로 인해 인덕터(inductor)의 코어(core), 마 이크로파 소자(microwave device) 및 전자파 차폐재 등으로 활용성이 매우 높은 소재이다. Ni-Zn ferrite의 기본 화학식은 MFe<sub>2</sub>O<sub>4</sub>으로 표현되며 이온 반경이 큰 산소 이온이 면심입방 격자(fcc)를 형성하고 unit cell 중에는 24개의 금속 이온 (M = Ni<sup>2+</sup>, Zn<sup>2+</sup> 및 Fe<sup>3+</sup>)과 32개의 산소 이온이 포함되어 있다. 산소 이온이 8개의 사면체 위치(tetrahedral site)와 16 개의 팔면체 위치(octahedral site)를 형성하며 금속이온이 이

<sup>©</sup> The Korean Magnetics Society. All rights reserved. \*Corresponding author: Tel: +82-43-841-5382, Fax: +82-43-841-5380, e-mail: ymkang@ut.ac.kr

들 산소 사면체와 팔면체 구조의 격자점에 들어가게 된다. M 이온이 사면체 위치를 차지하면 정스피넬(normal spinel), 팔 면체 위치를 차지하면 역스피넬(inversed spinel)이라 하는데 Ni-Zn ferrite는 Zn 이온이 주로 사면체 위치를 차지하고 Ni 이온이 주로 팔면체 site에 위치한 정스피넬과 역스피넬이 혼 합된 형태(mixed spinel)로 알려져 있다[6,7].

최근 스마트기기 및 전자 통신 기기의 급속한 발전에 따라 다양한 주파수의 전자파와 자기장을 발생시키는 부품의 사용 이 늘어나고 있으며 이들 간의 전자기적 간섭으로 인한 장애 문제가 대두되고 있어 전자파 차폐의 필요성이 증가하고 있 다. 이러한 전자파 간섭을 EMI(electro-magnetic interference) 라고 하며 기기로부터 직접 방사 또는 전도되는 전자파가 다 른 통신 부품의 전자기 수신 기능에 장애를 주는 것을 의미 한다. EMI를 차폐하기 위한 방법으로는 금속 shield can 등 전도성 소재로 차폐 및 내부 회로를 보호하는 전기장 차폐와 투자율이 높은 재료를 sheet나 film 형태로 활용한 자기장 차 폐가 있다. Ni-Zn 페라이트는 효과적인 자기장 차폐 소재 중 하나로 수~수백 MHz 대역에서 높은 복소투자율 값( $\mu_r = \mu' + j \mu''$ )과 높은 전기 비저항 값을 가지고 있어 해당 주파 수 대역에서 EMI 차폐 및 무선 전력 전송 회로의 교류 자 기장의 차폐 소재로 활용성이 높다.

Ni-Zn 폐라이트는 고상법(solid-state reaction)[8,9], 공침 법(co-precipitation method)[10,11], 졸겔법(sol-gel method) [12,13] 등 다양한 방법으로 합성이 되어 왔다. 합성방법, 공 정조건 및 Ni-Zn의 조성비에 따라 미세 구조와 자기적 특성 이 크게 변하는 것으로 알려져 있다. 이들을 고주파 소재로 활용하기 위해서는 실수부와 허수부를 갖는 복소투자율 ( $\mu$ , =  $\mu'$ +j  $\mu''$ )를 제어하는 것이 매우 중요하다. 예를 들어 인덕터 코어나 교류 자기장의 차폐를 위해서는 해당 주파수 대역에서 높은  $\mu'$  값과 0에 가까운  $\mu''$  값이 가장 이상적이다 [14]. 본 연구에서는 Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub>를 넓은 조성 범위(0.2  $\leq x \leq 0.8$ )에서 합성하여 조성 변화와 소결 온도에 따라 구조 및 자기적 특성을 체계적으로 연구하였다.

## II. 실험 방법

Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub>(x = 0.2, 0.25, 0.3, 0.35, 0.4, 0.6, 0.8)를 일반적인 고상반응법으로 합성하였다. 출발원료는 NiO(99.97%) 와 ZnO(99%), 그리고 Fe<sub>2</sub>O<sub>3</sub>(99%) 분말을 각 조성에 따라 화학양론비에 맞게 칭랑하여 ZrO<sub>2</sub> ball과 증류수와 함께 120 rpm, 20시간 동안 습식 혼합 분쇄(ball milling)를 하였다. 분 쇄 후 건조된 시료를 알루미나 도가니에 담아 전기로에 넣고 공기 분위기 1000 °C에서 4시간 동안 1차 하소를 진행하였다. 하소가 완료된 분말을 재분쇄한 다음 disk형 몰드(직경 30 mm)와 toroidal형 몰드(내경 9 mm, 외경 14.8 mm)를 사용하 여 disk형에는 3.0 g, toroidal형에는 0.5 g의 분말을 넣고 0.2 ton의 압력을 가하여 성형한 뒤 1150 ℃ 또는 1250 ℃ 온도 의 전기로에서 공기 분위기 중 2시간 동안 소결하였다. 하소 및 소결 과정의 승온 시에는 퍼니스 온도를 5 ℃/min로 제어 하였고, 강온 시에는 소결온도로 부터 300 ℃까지는 -2.5 ℃/ min로 제어한 뒤 상온 부근까지 자연 냉각을 하였다. Cu Kα (λ=0.154056 nm)를 타겟으로 사용하는 XRD(D8-Adcance, Bruker)를 사용하여 분말 샘플의 결정상 분석을, 전자현미경 (SEM, JSM-7610F, JEOL)을 사용하여 소결체 파단면의 미세 구조를 관찰하였다. Vibration sample magnetometer(VSM, Lakeshore 7410)를 사용하여 인가 자장 -15 kOe ≤ H ≤ 15 kOe 구간에서 M-H curve를 측정하였다. 자화값의 온도 의존성 특성(M-T curve)은 Physical Property Measurement System (PPMS, Quantum design)의 VSM 모드를 사용하여 10K≤ T ≤ 400 K 구간에서 H=1 T 자장을 인가한 상태로 또는 자기 장을 제거한 후(H=0) 각각 M-T curve를 측정하였다. 복소투 자율( $\mu_r = \mu'_r + j \mu''_r$ )의 실수부  $\mu'_r$ 및 허수부  $\mu'_r$ 는 Impedance analyzer(E4991A, Agilent Technologies)을 사용하여 1 MHz~ 1 GHz 주파수 대역에서 toroidal 형태의 소결 샘플에 대해 측정하였다.

#### III. 결과 및 논의

Fig. 1(a)는 Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub>(x = 0.2, 0.25, 0.3, 0.35, 0.4, 0.6, 0.8)를 1150 °C에서 소결한 샘플의 XRD 분석 결과이다. 전 조성의 범위에서 2차상 없이 단상의 cubic spinel 패턴이 확인되었다. Fig. 1(b)의 1250 °C에서 소결한 Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub> (x = 0.2, 0.4, 0.6, 0.8) 샘플에서도 단상의 cubic spinel 상 의 회절 패턴을 보였다. XRD 패턴으로부터 1150 °C 소결한 샘플의 격자상수 *a*와 격자부피를 계산하여 Table I에 제시하 였고 x에 따른 이들의 변화를 Fig. 2(a)에 나타내었다. Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub>에서 Ni의 양이 증가함에 따라 격자 상수와 부 피가 순차적으로 감소하는데 이는 Ni<sup>2+</sup>의 이온 반경(0.78 Å) 이 Zn<sup>2+</sup>의 이온 반경(0.82 Å)보다 작기 때문이다. 1250 °C 에서 소결한 샘플들에서도 1150 °C 샘플들과 거의 동일한 격 자 상수 및 격자 부피의 변화를 보였다(Fig. 2(b)).

Fig. 3은 1150 °C(a~d) 및 1250 °C(e~h)에서 2시간 동안 소결한 Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub>(x = 0.2, 0.4, 0.6, 0.8) 샘플의 파단면 의 전자현미경 사진이다. 사진에 제시된 결정립 크기(d)는 선 형 교차법으로 Fig. 3에 제시된 사진보다 넓은 영역에서 평 균적으로 구하였다. 1150 °C 소결한 샘플의 경우 공통적으로 기공이 많이 보인다. 1150 °C 및 1250 °C에서 소결한 샘플 모두에서 결정립의 날카로운 면(Facet)들이 확인되었는데 이



**Fig. 1.** (Color online) (a) XRD patterns of Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub> (x = 0.2, 0.25, 0.3, 0.35, 0.4, 0.6, 0.8) samples sintered at 1150 °C and (b) those of Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub> (x = 0.2, 0.4, 0.6, 0.8) samples sintered at 1250 °C.

**Table I.** Sintering density, lattice parameter (*a*), lattice volume (vol.), saturation magnetization ( $M_S$ ), coercivity ( $H_C$ ), real part of permeability ( $\mu''$ ) at 1 MHz, maximum imaginary part of permeability ( $\mu''_{max}$ ), and the frequency ( $f_{\mu''max}$ ) at the maximum  $\mu''$  of Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub> (x = 0.2, 0.25, 0.3, 0.35, 0.4, 0.6, 0.8) sintered at 1150 °C.

| x    | Density (g/cm <sup>3</sup> ) | a (Å) | Vol. (Å <sup>3</sup> ) | M <sub>s</sub> (emu/g) | $H_c$ (Oe) | μ' (@ 1MHz) | $\mu''_{max}$ | $f_{\mu'' max}$ (MHz) |
|------|------------------------------|-------|------------------------|------------------------|------------|-------------|---------------|-----------------------|
| 0.20 | 3.49                         | 8.421 | 597.25                 | 9.72                   | 10.7       | 0.93        | -             | -                     |
| 0.25 | 3.98                         | 8.416 | 596.06                 | 20.2                   | 10.7       | 0.83        | -             | -                     |
| 0.30 | 4.01                         | 8.409 | 594.66                 | 36.7                   | 10.1       | 218         | 100           | 2.29                  |
| 0.35 | 4.09                         | 8.405 | 593.73                 | 54.1                   | 10.8       | 363         | 173           | 6.68                  |
| 0.40 | 3.38                         | 8.402 | 593.03                 | 62.3                   | 8.80       | 159         | 74            | 12.9                  |
| 0.60 | 2.98                         | 8.301 | 588.69                 | 78.3                   | 9.72       | 38          | 18            | 59.0                  |
| 0.80 | 3.15                         | 8.359 | 583.95                 | 70.6                   | 20.9       | 19          | 8.79          | 150                   |



**Fig. 2.** (Color online) Change (%) of cell parameter a and cell volume (vol.) with variation of x in Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub> samples sintered at 1150 °C (a) and 1250 °C (b).

는 Fig. 1의 XRD 결과와 함께 각 온도에서 충분한 반응에 의해 결정상이 형성되었음을 알 수 있다. Fig. 3에 제시된 평 균 결정립의 크기(*d*)는 Ni 치환량(*x*)의 증가에 따라 전체적으 로 소폭 감소하는 듯 보이나 미세구조와 평균 결정립의 크기 는 *x*에 따라 뚜렷한 변화의 경향을 보이지 않는다고 볼 수 있다. 소결온도가 1150 °C에서 1250 °C로 상승했을 때 결정 립의 크기는 대략 50 % 정도 증가하였음을 알 수 있다.

Fig. 4에서는 Ni-Zn ferrite의 자기이력곡선(M-H curve)을 나타내었다. 낮은 자기장 영역에서의 확대된 이력곡선은 inset

으로 제시하였다. x=0.2에서는 H에 따라 M이 1차 함수적으 로 증가하는 상자성체의 자화거동을 보이며 매우 낮은 자화 값을 보인다. x=0.25에서부터 S 형태의 M-H 커브를 보이는 듯하나 여전히 낮은 자화값을 보이며, x=0.3에서부터 일반자 석인 강자성체(페리자성체)의 자화 거동을 보인다. 포화자화 는 x가 증가함에 따라 0.6에서 78.3 emu/g까지 증가했다가 x=0.8에서 70.6 emu/g 다시 감소한다. 포화자화와 보자력 값 은 Table I에 정리하였다. 이러한 결과는 자성원소인 Ni<sup>2+</sup>이 비자성 원소인 Zn<sup>2+</sup>을 치환함에 따라 포화자화가 증가되다가



Fig. 3. Micrographs of  $Ni_xZn_{1-x}Fe_2O_4$  (x = 0.2, 0.4, 0.6, 0.8) with different sintering temperature of 1150 °C (a~d) and 1250 °C (e~h).



**Fig. 4.** (Color online) M-H curves of Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub> (x = 0.2, 0.25, 0.3, 0.35, 0.4, 0.6, 0.8) sintered at 1150 °C.

x = 0.8에서 down spin 위치의 Ni<sup>2+</sup>이 증가하면서 다시 감소 한 것으로 이해된다. 본 연구에서의 포화자화 값들은 다른 연 구에서 보고된 값들 보다 높은 것으로 확인되었다[8,9,13].

상자성 거동에서 페리 자성으로 변화해가는 x=0.2, 0.3, 0.4 조성의 샘플에 대해서 온도에 따른 자화값 변화를 (M-T)

측정하여 Fig. 5(a)에 나타내었다. 각 샘플은 상온에서부터 Zero-Field 냉각 후 10 K에서 H=1.0 T의 자기장을 인가한 후 1 ℃/min으로 승온 시키면서 자화값(M, emu/g)를 측정하 였다. Fig. 5(b)는 Fig. 5(a)로부터 M(T)/M<sub>10K</sub> 값을 계산하여 온도에 따라 나타낸 그래프이다. x=0.2일 때 온도에 따른 기울기가 가장 가파르게 감소하고 x=0.3, 0.4로 증가할수록 기울기가 순차적으로 감소하는 것을 알 수 있다. 또한 x=0.3 샘플의 경우 저온 영역에서 온도 상승에 따라 자화값 이 오히려 증가하는 구간이 존재함을 확인할 수 있다. Fig. 5(c)는 300 K에서 PPMS에 loading한 샘플을 centering하기 위해 자기장을 인가한 후 다시 자기장을 제거하여(H=0) 샘 플 온도를 10 K으로 냉각하였고, 이후 온도를 상승시키면서 잔류 자화값을 측정한 결과이다. M-T 곡선을 미분하여 온도 가 가장 급격하게 떨어지는 지점을 큐리온도(Tc)로 정의할 때 x=0.2 샘플은 103 K, x=0.3은 308 K로, x=0.4 샘플은 400 K 이상으로 본 실험에서는 측정되지 않았다. Ni 치환량 (x)이 높을수록 T<sub>C</sub>가 높아지는 것을 알 수 있다. 또한 Fig. 4 에서 x = 0.2 샘플이 상자성체의 거동을 보인 것은 T<sub>C</sub>가 상온 보다 낮기 때문이며, x=0.3 샘플은 Tc가 308 K로 상온보다



**Fig. 5.** (Color online) Temperature dependence of magnetization of Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub> (x = 0.2, 0.3, 0.4) measured under magnetic field H = 1 T (a) and no magnetic field (H = 0) (c), and (b) plot of  $M/M_{10K}$  vs. T obtained from Fig. 5(a).



Fig. 6. (Color online) Real ( $\mu$ ) and imaginary ( $\mu''$ ) permeability of Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub> (x = 0.2, 0.25, 0.3, 0.35, 0.4, 0.6, 0.8) sintered at 1150 °C and 1250 °C.

약간 높아 약한 강자성의 M-H 곡선을 보였음을 알 수 있다. Fig. 6(a)와 6(b)는 1150 °C에서 소결한 샘플의 주파수(1 MHz~1 GHz)에 따른 투자율의 실수부(μ')와 허수부(μ") spectra를 보여준다. 1 MHz에서 투자율의 실수부값, 투자율 허수부의 최대값(µ"max), 허수부가 최대값일 때의 주파수(fu" max) 값을 각각 Table I에 제시하였다. 상자성 특성을 보이는 x = 0.2, 0.25 샘플은 전 주파수 대역에서 μ와 μ"가 모두 거의 0에 가까운 것을 알 수 있다. 약한 강자성 특성을 보이는 x = 0.3부터 μ가 급격히 증가하여 x = 0.35일 때 1 MHz에서 최대값을 보이며 x=0.4부터 x=0.8까지 x가 증가함에 따라 순차적으로 감소하며서  $f_{\mu'' max}$ 는 증가하는 전형적 Snoek's law를 따르는 거동을 보인다[15,16]. μ"max 값은 x=0.35 샘플 에서 최대치를 보인다. Fig. 6(c)와 6(d)는 1250 ℃에서 소결 한 샘플의 주파수(1 MHz~1 GHz)에 따른 투자율의 실수부와 허수부 spectra를 각각 보여준다. 여기서도 마찬가지로 x에 따 른 1 MHz에서  $\mu'$ ,  $\mu''_{max}$ ,  $f_{\mu''}$  max 값을 각각 Table II에 제시 하였다. 상자성 특성을 보인 x=0.2, 0.25 샘플은 1150 ℃와 마찬가지로 #와 #'가 거의 0에 가까운 값을 보였다. 1 MHz 에서의  $\mu'$  및  $\mu''_{max}$  값은 x = 0.3일 때 최대치를 보이며, x가 증가함에 따라 1 MHz에서의 μ' 값과 μ"max 값은 감소하면서 fu" max는 고주파 쪽으로 이동한다. 1150 ℃에서 1250 ℃로 소

**Table II.** Sintering density, real part of permeability ( $\mu'$ ) at 1 MHz, maximum imaginary part of permeability ( $\mu''_{max}$ ), and the frequency at the  $\mu''_{max}$  ( $f_{\mu'' max}$ ) of Ni<sub>x</sub>Zn<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub> (x = 0.2, 0.25, 0.3, 0.35, 0.4, 0.6, 0.8) sintered at 1250 °C.

| x    | Density (g/cm <sup>3</sup> ) | μ' (@ 1 MHz) | $\mu''_{max}$ | $f_{\mu'' max}$ |
|------|------------------------------|--------------|---------------|-----------------|
| 0.2  | 4.63                         | 1.12         | -             | -               |
| 0.25 | 4.87                         | 2.42         | -             | -               |
| 0.3  | 4.72                         | 750          | 396           | 1.68            |
| 0.35 | 4.64                         | 741          | 332           | 4.27            |
| 0.4  | 4.45                         | 369          | 166           | 8.00            |
| 0.6  | 4.30                         | 103          | 53            | 35.5            |
| 0.8  | 4.23                         | 41           | 21            | 77.7            |

결 온도가 높아짐에 따라 각 샘플의 복소투자율은 증가하였 으며  $f_{\mu'' max}$ 은 전체적으로 더 낮은 주파수 방향으로 이동하였 음을 알 수 있다. 소결 온도에 따른 이러한 변화는 소결밀도 의 증가와 결정립의 크기에 따른 변화가 주요인으로 밀도가 높을수록, 결정립이 클수록 투자율의 최대 값은 높아지며  $f_{\mu''}$ max는 낮아진다. 다만 1150 ℃ 소결시에는 복소투자율의 최대 값을 보이는 조성이 x=0.35였으나 1250 ℃ 소결 시에서는 x=0.3로 변화되는 것을 볼 때 소결온도가 Ni-Zn ferrite의 고유한 자기적 특성에도 일부 영향을 미친다고 볼 수 있다. 본 실험의 조성을 갖는 Ni-Zn Ferrite의 이론 밀도는 5.3~5.4 g/cm<sup>3</sup>으로 Table II에서 얻어진 소결밀도로부터 확인 된 상대밀도는 80~87 % 수준임을 알 수 있다. 공정 개선을 통해 소결밀도를 증가시킨다면 투자율 값은 10 % 이상 개선 될 여지가 있을 것이다.

## IV. 결 론

 $Ni_xZn_{1-x}Fe_2O_4(x=0.2, 0.25, 0.3, 0.35, 0.4, 0.6, 0.8)$ 일반적인 고상반응법으로 합성하여 조성과 소결 온도에 따른 미세구조 및 자기적 특성을 연구하였다. 1150 ℃ 및 1250 ℃ 에서 소결하였을 때 전 조성에서 단상의 cubic spinel 상이 합성되었으며 x의 증가에 따라 Ni<sup>2+</sup>와 Zn<sup>2+</sup>의 이온반경 차이 로 인해 격자상수가 감소하였다. x에 따른 미세구조 상 큰 변화는 없었으나 소결 온도가 높아짐에 따라 입성장과 치밀 화가 일어났다. x=0.2, 0.25에서 상자성 거동을 보이다가 x=0.3에서부터 페리자성의 거동이 보이며 포화자화는 x가 증 가함에 따라 증가하여 x=0.6에서 최대값을 보이고 x=0.8에 서 다시 감소했다. 복소 투자율의 고주파 특성(1 MHz≤ 1 GHz)은 x = 0.3에서 x = 0.8까지 증가함에 따라 투자율의 실 수부 및 허수부의 최대값은 감소하면서 복소 투자율 spectra 가 전체적으로 높은 주파수 방향으로 이동하였다. 이는 Ni 치 환량이 증가함에 따라 결정자기이방성이 증가하여 강자성 공 명주파수가 증가하기 때문으로 판단된다. 소결온도가 1150 ℃ 에서 1250 °C로 증가했을 때 투자율의 실수부와 허수부 최대 값은 증가했고 전체 spectra는 저주파 방향으로 이동하였다. 본 연구는 Ni/Zn의 함량비에 따라 다양한 주파수 환경에서 인덕터 코어 및 전자파 흡수체로의 응용 가능성을 보여 주었 다. 또한 본 연구를 바탕으로 소결 조제 및 양이온 첨가제를 추가하여 RF(radio-frequency) 영역에서 실투자율/투자손실 비 (μ'/μ'/)가 향상된 특성을 갖는 재료의 개발도 가능할 것으로 보인다.

#### 감사의 글

본 연구는 이 성과는 2018년도 정부(과학기술정보통신부) 의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2017R1C1B2002394).

#### References

- F. G. Brockman and K. E. Matteson, J. Am. Ceram. Soc. 53, 517 (1970).
- [2] H. Igarashi and K. Okazaki, J. Am. Ceram. Soc. 60, 51 (1977).
- [3] G. G. Bush, J. Appl. Phys. 63, 3765 (1988).
- [4] J. Lee, Y. Hong, W. Lee, and J. Park, J. Magn. 18, 428 (2013).
- [5] S. Y. An, I. S. Kim, S. H. Son, S. Y. Song, and J. W. Hahn, J. Korean Magn. Soc. 20, 182 (2010).
- [6] J. Smit and H. P. J. Wijin, Ferrites, Philips' Technical Library, Eindhoven, Netherlands (1959), pp. 136~326.
- [7] S. Chikazumi, Physics of ferromagnetism (2<sup>nd</sup> Ed.) Clarendon Press, Oxford (1997), pp. 197~221.
- [8] S. T. Mahmud, A. K. M. Akther Hossain, A. K. M. Abdul Hakim, M. Seki, T. Kawai, and H. Tabata, J. Magn. Magn. Mater. 305, 269 (2006).
- [9] N. N. Jiang, Y. Yang, Y. Zhang, J. Zhou, and P. Liu, J. Magn. Magn. Mater. 401, 370 (2016).
- [10] I. H. Gul, W. Ahmed, and A. Maqsood, J. Magn. Magn. Mater. 320, 270 (2008).
- [11] M. M. Rashad, E. M. Elsayed, M. M. Moharam, R. M. Abou-Shahba, and A. E. Saba, J. Alloy. Compd. 486, 759 (2009).
- [12] S. Zahi, M. Hashim, and A. R. Daud, J. Magn. Magn. Mater. 308, 177 (2007).
- [13] S. E. Shrsath, B. G. Toksha, R. H. Kadam, S. M. Patange, D. R. Mane, G. S. Jangam, and A. Ghasemi, J. Phys. Chem. Sol. 71, 1669 (2010).
- [14] M. Yamaguchi, Y. Miyazawa, K. Kaminishi, H. Kikuchi, S. Yabukami, K. I. Arai, and T. Suzuki, J. Magn. Magn. Mater. 268, 170 (2004).
- [15] J. L. Snoek, Physica (Amsterdam) 4, 207 (1948).
- [16] T. Nakamura, J. Appl. Phys. 88, 348 (2000).