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Uncertainty is ubiquitous in practical engineering and scientific research. The uncertainties in parameters can

be treated as interval numbers. The prediction of upper and lower bounds of the response of a system includ-

ing uncertain parameters is of immense significance in uncertainty analysis. This paper aims to evaluate the

upper and lower bounds of magnetic vector potentials in a linear magnetostatic field efficiently with uncertain-

but-bounded parameters. The uncertain-but-bounded parameters are represented by interval notations. By

performing Taylor series expansion on the magnetic vector potentials obtained from the equilibrium governing

equation and by using the properties of interval mathematics, we can calculate the upper and lower bounds of

the magnetic vector potentials of a linear magnetostatic field. In order to evaluate the accuracy and efficiency of

the proposed method, two numerical examples are used. The results illustrate that the precision of the pro-

posed method is acceptable for engineering applications, and the computation time of the proposed method is

significantly less than that of the Monte Carlo simulation, which is the most widely used method related to

uncertainties. The Monte Carlo simulation requires a large number of samplings, and this leads to significant

runtime consumption. 
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1. Introduction

Magnetostatics is the branch of physics that addresses

static magnetism and stationary magnetic fields. In engi-

neering, linear magnetostatic field analysis is of immense

significance for magnetic equipment design. However, all

engineering analyses and design problems involve un-

certainties of varying degrees. Owing to measurement

inaccuracies, modelling approximations, manufacturing

deviations, or external environmental changes, many types

of uncertain information may arise, such as geometric

dimensions, material properties, external loads, boundary

conditions, etc [1]. Therefore, the concept of uncertainty

plays a significant role in the calculation of the physical

quantities of linear magnetostatic fields, such as magnetic

field intensity, magnetic induction, magnetic flux, current,

etc. Modelling the uncertain parameters as random

variables is the most common approach for handling the

problem of uncertainty. Under this circumstance, all the

information about uncertain parameters is provided by the

probability distribution functions, and the solutions or

results will show statistical variations. Many papers have

been published regarding the use of random analysis [5].

However, the information about the probabilistic distribu-

tion is usually unavailable or sometimes wrongly assum-

ed, and the probabilistic results may be inaccurate or

incorrect. 

The probabilistic approach is not the only available

method to handle uncertainty, which is not always random.

Alternatively, the uncertain parameters can be treated as

interval numbers with lower and upper bounds. In interval

analysis, the uncertain parameter is denoted by a simple

range [9]. When information about an uncertain parameter

in the form of a probability function is not available, the

interval analysis can be used. If the bounds on the magni-

tude of uncertain parameters are known, the range of the

response of the uncertain system can be determined [11].

The Taylor series expansion is an effective method for

mathematical analysis. In both engineering applications

and scientific researches, we encounter many small changes
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in the system parameters. Taylor series expansion is an

effective approach for describing the changes in the

responses of a system if small changes are imposed on the

parameters of the system. Such analysis will reveal the

effect of parameter changes on the responses of a system.

Many papers have been published regarding the use of

Taylor series expansion [13]. Taylor series expansion

combined with interval analysis can be used to handle

uncertainty effectively. 

In this study, Taylor series expansion is proposed for

evaluating the upper and lower bounds of magnetic vector

potentials in a linear magnetostatic field with uncertain-

but-bounded parameters. The uncertain parameters of the

linear magnetostatic field are represented by interval

notations. Each matrix or vector in the equilibrium govern-

ing equation is the function of the uncertain parameters.

The equilibrium governing equation of the linear magneto-

static field is affected by the change in each uncertain

parameter. By performing Taylor series expansion on the

magnetic vector potentials obtained from the equilibrium

governing equation and by using the properties of interval

mathematics, we can calculate the upper and lower bounds

of the magnetic vector potentials. In order to evaluate the

accuracy and efficiency of the proposed method, the

upper and lower bounds of the magnetic vector potentials

and the computation time of the proposed method are

compared with those obtained using Monte Carlo simulation,

which is always referred to as a reference solution when

compared with other methods related to uncertainties.

Monte Carlo simulation is very time consuming, but is

also the most widely used method related to uncertainties.

The remainder of this paper is organized as follows. In

Section 2, some basics of interval mathematics are briefly

introduced. In Section 3, Taylor series expansion is em-

ployed for evaluating the upper and lower bounds of

magnetic vector potentials in a linear magnetostatic field

with interval parameters. In Section 4, two numerical

examples are provided to illustrate the accuracy and

efficiency of the proposed method. Section 5 presents the

conclusions of this study. 

2. Interval Basics

Interval analysis is a new and rising branch of applied

mathematics. It is a numerical approach that treats an

interval as a new number [9]. Assume that R is a real

number field. The closed interval denoted by [a, b] is the

set of real numbers given by 

. (1)

Although various other types of intervals, such as open

or half-open, appear throughout mathematics, our work

will primarily concentrate on closed intervals. In this

study, the term interval indicates a closed interval. We

denote the interval as . The left and right

endpoints of the interval are denoted by  and ,

respectively. Moreover,  and  are the lower and upper

bounds, respectively. The set of all closed real intervals is

denoted by I(R).

The nominal value of an interval  is defined

as: 

, (2)

and the deviation amplitude of  is 

. (3)

The quotient  is called the uncertainty factor

and it indicates the extent to which an uncertain

parameter varies [10]. 

Further, we consider the concept of an interval vector.

A vector whose elements are intervals is called an interval

vector. Assume that , i = 1, 2,…n, we

obtain 

,  (4)

or in the element form, we obtain

,  (5)

where  is called an n-dimensional interval vector. The

set of all the interval vectors in Rn is denoted by .

Further, the interval vector  can also be

denoted as: 

, (6)

where 

.  (7)

We define the nominal value vector as: 

, (8)

and the deviation amplitude vector as: 

.  (9)

Using the interval basics in this section, we can

formulate the problem of evaluating the upper and lower

bounds of magnetic vector potentials in a linear magneto-

static field with interval parameters. 

3. Taylor Series Expansion for Evaluating 
the Bounds of Magnetic Vector Potentials

The finite element method (FEM) is a well-accepted
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computational tool for assessing the physical properties of

magnetic equipment and devices [17]. The magnetic

vector potential is a fundamental parameter in magnetic

FEM analysis. The equilibrium governing equation [19]

for a general engineering linear magnetostatic system

with n degrees of freedom is: 

, (10)

where  is the stiffness matrix, f(a) =

 is the external excitation vector, and A(a) =

  is the unknown nodal vector of the magnetic

vector potential. The stiffness matrix, external excitation

vector, and magnetic vector potential can be regarded as

functions of the system parameter vector a = [a1, a2, ...,

am], and m is the number of uncertain parameters. 

The vector a is usually assumed to be deterministic.

Considering uncertainty, the parameter vector a = [a1, a2,

..., am] can be assumed to have uncertainties. Based on the

interval analysis, the parameter vector  a = [a1, a2, ..., am]

is assumed to belong to an interval vector aI = [ , ,

..., ], i.e., 

,  (11)

or in the element form as follows

,  (12)

where  is an interval number, and  are the lower

and upper bounds of , respectively. 

Based on the interval analysis, the nominal value vector

of aI can be expressed by Eq. (8), and the deviation

amplitude vector of aI can be expressed by Eq. (9). 

Using the expression of the nominal value vector ac and

deviation amplitude vector Δa, the interval parameter

vector aI can be denoted as 

,  (13)

where  is a symmetric interval vector expressed as 

.  (14)

Further, the magnetic vector potential solution to Eq.

(10) is an interval vector , 

.

(15)

The solution to Eq. (15) can be converted into the

prediction of the upper and lower bounds of the magnetic

vector potential, i.e., 

,

(16)

where max and min represent the global maximum and

global minimum of the set, respectively. 

The upper and lower bounds of the magnetic vector

potential can also be expressed in element form as

follows: 

, (17)

where n is the number of degrees of freedom in the linear

magnetostatic equilibrium governing equation. 

It is usually difficult to calculate the upper and lower

bounds in Eq. (16) directly. Instead, Taylor series expan-

sion can be employed to evaluate the range [11, 12]. In

engineering applications, the higher-order terms in the

Taylor series expansion are usually neglected, and only

the first-order expansion terms are retained. When the

changes in the system parameters are small, the first-order

Taylor series expansion satisfies the accuracy requirement.

If the changes in the system parameters are relatively

large, i.e. the deviation amplitude of the interval para-

meter is relatively large, the interval of the uncertain

parameter can be partitioned into several subintervals, and

the deviation amplitude of each subinterval is much

smaller than that of the original interval [23]. For

example, the interval  can be divided into

two subintervals, i.e.,  and ,

and . The deviation amplitude of the original

interval is , and the deviation amplitude of the

subinterval is . Once an interval is divid-

ed into several subintervals, the deviation amplitude

becomes significantly smaller, and in this situation, the

first-order Taylor series expansion can be directly used to

predict the upper and lower bounds of the response to a

system with uncertainties. Thus, we study only the case in

which the deviation amplitude of the interval parameter is

small. 

For an uncertain variable x, the quotient β =

 is the uncertainty factor. In this study, the

uncertainty factors of the uncertain parameters are

assumed to be smaller than 5 %, i.e. . In practice,

uncertainty of 5 % is sufficiently large for most engi-

neering parameters, and hence, this is an acceptable range

for applications. Thus, the changes in the parameters are

treated as small changes in this study. 

By performing the first-order Taylor series expansion of

A(a) about a = ac, we obtain 

, (18)
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, (19)

where m is the number of uncertain parameters. 

Substituting Eq. (19) into Eq. (18) yields 

. (20)

By using the interval operations, the upper and lower

bounds of the magnetic vector potential based on the

Taylor series expansion can be determined as follows:

. (21)

Substituting a = ac into Eq. (10) yields 

. (22)

The partial derivative  can be derived as follows

[27-30]. The stiffness matrix K(a) and the external ex-

citation vector f(a) are assumed to be differentiable with

respect to each parameter , and this

guarantees the differentiability of  with respect to

each parameter . 

Differentiating both sides of Eq. (22) with respect to aj
yields

.

(23)

By transposing the terms, the partial derivative 

can be obtained as follows: 

.

 (24)

By substituting Eq. (24) into Eq. (21), and using the

partial derivatives derived from Eq. (26), the upper and

lower bounds of the magnetic vector potential can be

calculated as follows: 

.

(25)

Notably, the matrix and vector partial derivatives, 

and  in Eq. (24) are still unknown. It is usually

very difficult to obtain these partial derivatives using an

analytical approach. An alternative feasible approach for

engineering applications is to perturb one system para-

meter at a time and use the finite difference method to

approximate the partial derivatives. It is illustrated as

follows: 

,

 (26)

where εj is a small perturbation of the system parameter

. For example, if , the small per-

turbation εj can be considered as εj = 0.005. 

For the sake of simplicity, we consider the notation as

follows: 

,  (27)

and Eq. (26) can be simplified as: 

.  (28)

By substituting Eq. (28) into Eq. (25), the upper and

lower bounds of the magnetic vector potential can be

calculated as follows: 

.

 (29)

In practice, the stiffness matrix and external excitation

vector can be obtained using the finite element software

ANSYS. We can establish the finite element model in

ANSYS, and the system parameters are assigned their

nominal values. The stiffness matrix , and the

external excitation vector  can be obtained using

ANSYS. We perturb the system parameter 
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of the finite element model with a small perturbation

. Subsequently, the perturbed stiffness matrix

 and the perturbed external excitation vector

 can also be obtained using ANSYS. All the

matrices and vectors obtained from ANSYS can be

loaded to MATLAB. Using the matrix operations, we can

execute the calculation of Eq. (29) in MATLAB, such that

the upper and lower bounds of the magnetic vector

potential can be obtained. 

4. Numerical Examples

In order to demonstrate the feasibility of Taylor series

expansion for evaluating the upper and lower bounds of

magnetic vector potentials in a linear magnetostatic field

with uncertain-but-bounded parameters, the following two

numerical examples are used. The results are compared

with those obtained using a Monte Carlo simulation. 

Monte Carlo simulation is a statistical method that

obtains the distribution range of responses through a large

number of random samplings. The Monte Carlo simulation

is most suitable for practical engineering applications

owing to their reliance on the repeated computation of

random numbers [25]. It is generally used when the com-

putation of an exact result using a deterministic algorithm

is unfeasible or impossible. It is always referred to as a

reference solution when compared with other methods

related to uncertainties. 

The Monte Carlo simulation for predicting the upper

and lower bounds of the response to a system with un-

certainties always requires a large number of samplings,

and this leads to significant runtime consumption. How-

ever, the proposed Taylor series expansion method related

to uncertainties is significantly more time-saving because

it does not demand a large sampling scale. In the follow-

ing examples, the computation time of Taylor series

expansion and Monte Carlo simulation are compared.

4.1. Example 1

Consider the linear magnetostatic field distribution of

two current-carrying conductors in a two-dimensional

space, as shown in Fig. 1. The linear magnetostatic field

of two current-carrying conductors.. The electric current

flows through the two conductors in the same direction,

along the z-axis. The two conductors are assumed to be

infinitely long in the z-direction; hence, the linear

magnetostatic field distribution can be regarded as a two-

dimensional problem in the xoy-plane. The thickness of

each conductor is t = 2 mm, the width of each conductor

in the y-direction is a = 12 mm, and the distance between

the center points of the two conductors in the x-direction

is l = 10 mm. The two conductors are surrounded by air.

Points 1-10 are located on the x-axis in the xoy-plane, and

the distance between every two points is d = 3 mm. The

linear magnetostatic field is symmetrical about the yoz-

plane. The magnetic vector potentials of points 1-10 are

discussed in the following text. The magnetic relative

permeability of air is µ0 = 1, and the magnetic relative

permeability of the conductor is µ = 1. The current

applied to each conductor in the z-direction is I = 24 A.

When all parameters are assigned their nominal values,

the planar contour of the magnetic vector potentials in the

z-direction is plotted in Fig. 2. 

Owing to manufacturing inaccuracy, measurement

errors, or variances of the environment, the parameters

exhibit some uncertainties. In this example, the magnetic

relative permeability of the conductor and the magnitude

of current are assumed to be the interval parameters. The

magnetic relative permeability of the conductor µ is

assumed to vary within the interval ; i.e.,

(1 )
j

j mε ≤ ≤

( )c

j
ε+K a

( )c

j
ε+f a

[0.95,  1.05]I
µ =

Fig. 1. (Color online) The linear magnetostatic field of two

current-carrying conductors.

Fig. 2. (Color online) The planar contour of the magnetic vec-

tor potentials in the z-direction with nominally valued param-

eters in Example 1.
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the nominal value is , and the deviation amplitude

is . The current applied to each conductor is

assumed to vary within the interval ; i.e.,

the nominal value is , and the deviation amplitude

is . 

The upper and lower bounds of magnetic vector

potentials of points 1-10 are discussed as follows. The

distribution of the linear magnetostatic field is a two-

dimensional problem, and the magnetic vector potentials

contain only components in the y-direction. Using the

given interval information, a Taylor series expansion is

employed to predict the upper and lower bounds of the

magnetic vector potentials. In order to verify the accuracy

and efficiency of the proposed method, a Monte Carlo

simulation is performed for comparison. In this example,

the sampling size of Monte Carlo simulation is 106, which

is large enough for most engineering applications. The

sample data are generated using the optimal Latin hyper-

cube design method, which distributes the sample data

over the design variable space in a uniform manner and

can avoid the occurrence of data clustering. This design

method is commonly used in sample data generation. 

The upper and lower bounds obtained by using the

Monte Carlo simulation are considered as control group

results. In this example,  denotes the nominal value,

and  and  denote the upper and lower bounds of

the magnetic vector potential of the ith point in the z-

direction, respectively. The nominal values and the upper

bounds of the magnetic vector potentials obtained by

using the Taylor series expansion and Monte Carlo

simulation are listed in Table 1. The nominal values and

the lower bounds of the magnetic vector potentials

obtained by using the Taylor series expansion and Monte

Carlo simulation are listed in Table 2. The relative errors

of the upper and lower bounds are also calculated. 

The testing environments and computation time of

Taylor series expansion method and Monte Carlo simulation

are compared in Table 3. It can be observed that with the

hardware environment remaining the same, the computa-

tion time of Taylor series expansion method is approxi-

mately 2 min, whereas, the computation time of Monte

Carlo simulation is more than 5 h. Obviously, the pro-

posed method is significantly more time-saving. 

The results presented in Table 1 and Table 2 indicate

that the Taylor series expansion results are consistent with

those obtained using Monte Carlo simulation. The relative

1c
µ =

0.05µΔ =

[22.8,  25.2]I
I =

24c
I =

1.2IΔ =

,

c

z i
A

,z i
A

,z i
A

Table 1. Nominal values and upper bounds of the magnetic

vector potentials (10−5 Wb/m) in Example 1. 

Point 

No.

Nominal 

value

 by 

Taylor series 

expansion

 by 

Monte Carlo 

simulation

Relative 

error

1 3.4942 3.6694 3.6651 0.117 %

2 3.2156 3.3766 3.3727 0.115 %

3 3.0053 3.1557 3.1520 0.117 %

4 2.8334 2.9751 2.9717 0.114 %

5 2.6885 2.8230 2.8197 0.117 %

6 2.5638 2.6921 2.6890 0.115 %

7 2.4549 2.5776 2.5747 0.112 %

8 2.3586 2.4766 2.4737 0.117 %

9 2.2732 2.3869 2.3841 0.117 %

10 2.1968 2.3066 2.3040 0.117 %

A
z i,

c

Az i,
Az i,

Table 2. Nominal values and lower bounds of the magnetic

vector potentials (10−5 Wb/m) in Example 1. 

Point 

No.

Nominal 

value

 by 

Taylor series 

expansion

 by 

Monte Carlo 

simulation

Relative 

error

1 3.4942 0.3319 0.3332 0.390 %

2 3.2156 0.3055 0.3067 0.391 %

3 3.0053 0.2855 0.2866 0.383 %

4 2.8334 0.2692 0.2702 0.371 %

5 2.6885 0.2554 0.2564 0.390 %

6 2.5638 0.2436 0.2445 0.368 %

7 2.4549 0.2332 0.2341 0.384 %

8 2.3586 0.2241 0.2249 0.356 %

9 2.2732 0.2160 0.2168 0.369 %

10 2.1968 0.2087 0.2095 0.382 %

A
z i,

c

A
z i,

A
z i,

Table 3. Comparison of hardware environment and computation time in Example 1.

Item Taylor series expansion Monte Carlo simulation

Operating system : Windows 7 Windows 7

CPU : Intel i7-4770@3.40 GHz Intel i7-4770@3.40 GHz

System type : 64 bit 64 bit

Memory : 16 GB 16 GB

Number of processors : 8 8

Software used : ANSYS15.0, MATLAB R2013 ANSYS 15.0 

Sampling size : — 106

Computation time : 135.72 s (2.26 min) 21258.94 s (5.91 h)
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errors are within acceptable ranges. The results presented

in Table 3 indicate that, with the hardware environment

remaining the same, the computation time of Taylor series

expansion method is significantly less than that of Monte

Carlo simulation. The results of comparison demonstrate

the accuracy and efficiency of the application of Taylor

series expansion for evaluating the upper and lower

bounds of magnetic vector potentials in a linear magneto-

static field with interval parameters. 

4.2. Example 2

Consider the linear magnetostatic field distribution of a

cylindrical solenoid brake system as shown in Fig. 3. The

system is symmetrical about its central vertical axis, and

the plot in Fig. 3. The linear magnetostatic field of a

cylindrical solenoid brake system.  is half the sectional

view. The symmetry axis is located in the cutting plane of

the sectional view. The solenoid brake system consists of

three parts: the armature part, the coil part, and the back

iron part. The armature part is the motion part of the

system and is located at the top. The back iron part is the

stationary part of the system and is located at the bottom.

Between the armature part and the back iron part is the

coil part, which comprises 650 turns of copper wires.

There is electric current flowing through the copper

wires. It is assumed that the magnetic flux generated by

the coil current is very small and that there is no magnetic

saturation of the system. Thus, the linear magnetostatic

field analysis of the system is linear and requires only one

step of iteration to obtain the solutions to the unknown

magnetic parameters. To simplify the analysis, it is also

assumed that there is no magnetic leakage at the boundary

parts of the system. There is air in the gap between the

components. 

Because the system is symmetrical about its central

vertical axis, the linear magnetostatic field distribution

can be regarded as a two-dimensional problem on the

xoy-plane, where the y-axis is the symmetry axis. The

dimensions of the back iron part are as follows: t1 = 7.5

mm, t2 = 7.5 mm, and t3 = 5.0 mm. The thickness of the

armature part is t4 = 7.5 mm. The gap between the

armature part and the back iron part is t0 = 2.5 mm. The

space between the coil part and the back iron part is d =

2.5 mm. The width of the coil part is W = 10 mm, and the

height of the coil part is H = 20 mm. Points 1-6 are six

representative locations of the system, and their magnetic

vector potentials are discussed in the following. The mag-

netic relative permeability of air is µair = 1, the magnetic

relative permeability of the copper wire in the coil part is

µcoil = 1, the magnetic relative permeability of the back

iron is µback iron = 1000, and the magnetic relative perme-

ability of the armature is µarmature = 2000. The current

applied to each copper wire of the coil part is I = 1 A.

The number of copper wire turns on the coil part is N =

650. When all parameters are assigned their nominal

values, the three-dimensional contour of the magnetic

vector potentials is plotted in Fig. 4. 

Owing to manufacturing inaccuracy, measurement errors,

Fig. 3. (Color online) The linear magnetostatic field of a cylin-

drical solenoid brake system. 

Fig. 4. (Color online) The three-dimensional contour of the

magnetic vector potentials with nominally valued parameters

in Example 2. 
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or variances of the environment, the parameters exhibit

some uncertainties. In this example, the magnetic relative

permeabilities of the back iron and the armature, and the

magnitude of the current applied to each copper wire of

the coil part, are assumed to be the interval parameters.

The magnetic relative permeability of the back iron µback iron

= 1 is assumed to vary within the interval  =

[950, 1050]; i.e., the nominal value is  = 1000,

and the deviation amplitude is  = 50. The

magnetic relative permeability of the armature µarmature is

assumed to vary within the interval  = [1900,

2100]; i.e., the nominal value is  = 2000, and the

deviation amplitude is  = 100. The current

applied to each copper wire of the coil part is assumed to

vary within the interval II = [0.95, 1.05]; i.e., the nominal

value is Ic = 1, and the deviation amplitude is ΔI = 0.05.

The upper and lower bounds of magnetic vector potentials

of points 1-6 are discussed as follows. The distribution of

the linear magnetostatic field in Fig. 3 is a two-dimen-

sional axisymmetric problem. Using the given interval

information, a Taylor series expansion is employed to

predict the upper and lower bounds of the magnetic vector

potentials. In order to verify the accuracy and efficiency

of the proposed method, a Monte Carlo simulation is

performed for comparison. In this example, the sampling

size of Monte Carlo simulation is 106, which is large

enough for most engineering applications. The sample

data are generated using the optimal Latin hypercube

design method, which distributes the sample data over the

design variable space in a uniform manner and can avoid

the occurrence of data clustering. This design method is

commonly used in sample data generation. 

The upper and lower bounds obtained by using the

Monte Carlo simulation are considered as control group

results. In this example,  denotes the nominal value,

and  and  denote the upper and lower bounds of

the magnetic vector potential of the ith point in the z-

direction, respectively. The nominal values and the upper

bounds of the magnetic vector potentials obtained by

using the Taylor series expansion and Monte Carlo

simulation are listed in Table 4. The nominal values and

the lower bounds of the magnetic vector potentials

obtained by using the Taylor series expansion and Monte

Carlo simulation are listed in Table 5. The relative errors

of the upper and lower bounds are also calculated.

The testing environments and computation time of Taylor

series expansion method and Monte Carlo simulation are

compared in Table 6. It can be observed that with the

hardware environment remaining the same, the computation

time of Taylor series expansion method is approximately

11 min, whereas, the computation time of Monte Carlo

simulation is more than 46 h. Obviously, the proposed

method is significantly more time-saving. 

µback iron

I

µback  iron

I

Δµback  iron

I

µarmature

I

µarmature

c

Δµarmature

Az i,

c

,z i
A

,z i
A

Table 4. Nominal values and upper bounds of the magnetic

vector potentials (10−5 Wb/m) in Example 2.

Point 

No.

Nominal 

value

 by 

Taylor series 

expansion

 by 

Monte Carlo 

simulation

Relative 

error

1 1.2008 1.2628 1.2566 0.493 %

2 0.3876 0.4076 0.4056 0.493 %

3 0.4930 0.5185 0.5160 0.484 %

4 1.3528 1.4225 1.4156 0.487 %

5 0.8123 0.8541 0.8501 0.470 %

6 0.3901 0.4102 0.4082 0.490 %

Table 5. Nominal values and lower bounds of the magnetic

vector potentials (10−5 Wb/m) in Example 2. 

Point 

No.

Nominal 

value

 by 

Taylor series 

expansion

 by 

Monte Carlo 

simulation

Relative 

error

1 1.2008 1.1388 1.1432 0.385 %

2 0.3876 0.3676 0.3690 0.379 %

3 0.4930 0.4676 0.4694 0.383 %

4 1.3528 1.2831 1.2880 0.380 %

5 0.8123 0.7705 0.7734 0.375 %

6 0.3901 0.3701 0.3714 0.350 %

A
z i,

c

Az i,
Az i,

A
z i,

c

A
z i,

A
z i,

Table 6. Comparison of hardware environment and computation time in Example 2. 

Item Taylor series expansion Monte Carlo simulation

Operating system : Windows 7 Windows 7

CPU : Intel i7-4770@3.40 GHz Intel i7-4770@3.40 GHz

System type : 64 bit 64 bit

Memory : 16 GB 16 GB

Number of processors : 8 8

Software used : ANSYS15.0, MATLAB R2013 ANSYS 15.0 

Sampling size : — 106

Computation time : 685.18 s (11. 42 min) 169043.32 s (46.95 h)
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The results presented in Table 4 and Table 5 indicate

that the Taylor series expansion results are consistent with

those obtained using Monte Carlo simulation. The relative

errors are within acceptable ranges. The results presented

in Table 6 indicate that, with the hardware environment

remaining the same, the computation time of Taylor series

expansion method is significantly less than that of Monte

Carlo simulation. The results of comparison demonstrate

the accuracy and efficiency of the application of Taylor

series expansion for evaluating the upper and lower bounds

of magnetic vector potentials in a linear magnetostatic

field with interval parameters. 

5. Conclusions

The Taylor series expansion is proposed for evaluating

the upper and lower bounds of magnetic vector potentials

in a linear magnetostatic field with uncertain-but-bounded

parameters by using the interval notations. Numerical

examples illustrate that the bounds of magnetic vector

potentials of this method agree well with those obtained

using a Monte Carlo simulation. Moreover, the proposed

method is significantly more time-saving than Monte

Carlo simulation. The results of the study indicate that the

Taylor series expansion can estimate the upper and lower

bounds of magnetic vector potentials in a linear magneto-

static field with interval parameters efficiently. 

Uncertainties are ubiquitous in practical magnetostatic

engineering: the dimensions of a magnetostatic system

may vary owing to measurement inaccuracies or manu-

facturing deviations, material properties may vary owing

to changes in humidity or temperature, applied currents

may vary owing to instability of the power equipment,

magnetic relative permeabilities may vary owing to improper

contact with the adjacent conductor materials, and the

experimental data may vary owing to different observations

by different laboratory staff. In such situations, the proposed

method of introducing Taylor series expansion for pre-

dicting the upper and lower bounds of magnetic vector

potentials can be employed. Our proposed method possesses

broad prospects in magnetostatic engineering applications.
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