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As an electromagnetic wave, X-rays are used to acquire diagnostic CT images. The aim of this phantom study

was to evaluate the image quality of ultra-low-dose (ULD) lung computed tomography (CT) achieved using a

deep-learning based image reconstruction method. The chest phantom was scanned with a tube voltage of 100

kV for various CT dose index (CTDIvol) conditions: 0.4 mGy for ultra-low-dose (ULD), 0.6 mGy for low-dose

(LD), 2.7 mGy for standard (SD), and 7.1 mGy for large size (LS). The signal-to-noise ratio (SNR) and noise

values in reconstructions produced via filtered back projection (FBP), iterative reconstruction (IR), and deep

convolutional neural network (DCNN) were computed for comparison. The quantitative results of both the

SNR and noise indicate that the adoption of the DCNN makes the image reconstruction in the ULD setting

more stable and robust, achieving a higher image quality when compared with the FBP algorithm in the SD

condition. Compared with the conventional FBP and IR, the proposed deep learning-based image reconstruc-

tion approach can improve the ULD CT image quality while significantly reducing the patient dose.
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1. Introduction

Computed tomography (CT) is widely used for the

diagnosis of diseases, and has been increasingly utilized

in the radiation oncology clinic because of the short

examination time and resulting three-dimensional repre-

sentation of the anatomical structure of the human body.

However, an excessive reliance on CT examinations or

the careless management of CT scanning dose protocols

may carry avoidable health risks. Therefore, methods to

reduce patient dose while maintaining CT image quality

are being discussed by several researchers.

An obvious approach to this problem is the adoption of

low-dose CT scanning protocols, for which methods such

as automatic self-release control [1], tube current control

[2], and tube voltage optimization [3] have been explored.

In particular, research on standardizing or optimizing dose

protocols for each part of the body is recognized as

important [4].

In terms of hardware-based approaches to low-dose CT,

there are efforts such as the development of a photon

count-based detector [5]. The photon counting detector

can acquire an image with reduced electronic noise, and

studies on the removal of artifacts in clinical images using

energy fractionation are being actively conducted [6].

Software-based efforts to develop a reconstruction

method using sparse sampling for realizing low-dose CT

images are also reported. There is a compressed sensing

theory that perfect signal restoration is possible if the

compressed matrix satisfies a certain condition, even

when the number of measured data is remarkably small.

The biggest advantage of sparse sampling is the effect of

reducing patient dose by reducing the number of data

samples [7].

With the increase in computation power enabled by

hardware acceleration, iterative reconstruction methods

are widely used in clinical practice to maintain image

quality while significantly reducing noise in low-dose

settings [8]. However, iterative reconstruction methods
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suffer from smoothing artifacts that negatively affect the

resulting image quality [9]. Recently, a deep learning-

based reconstruction method that can improve image

quality while achieving more dose reduction than iterative

reconstruction has been used. Deep learning-based recon-

struction achieves higher image quality, lower dose, and

faster reconstruction speeds than iterative reconstruction,

and can produce more natural images [10].

Therefore, the purpose of this study is to evaluate the

image quality achieved using deep learning reconstruction

provided by the CT equipment at several doses based on

CT dose index (CTDIvol) conditions used in clinical lung

scans. The dose criteria used for lung imaging were

CTDIvol 0.4 mGy for ultra-low-dose (ULD), CTDIvol

0.6 mGy for low-dose (LD), CTDIvol 2.7 mGy for standard

dose (SD), and CTDIvol 7.1 mGy for a large-size patient

(LS). Based on these dose protocols, the chest phantom

was scanned, and the noise and signal-to-noise ratio

(SNR) were evaluated after reconstructing the chest

phantom image using filtered back projection (FBP),

iterative reconstruction (IR), and deep convolutional neural

network (DCNN).

2. Materials and Methods

2.1. Image reconstruction method

The image reconstruction methods used in this study

are FBP, IR, and DCNN. Figure 1 shows the charac-

teristics of each reconstruction method. FBP is a method

of continuously summing the values   of the projected

images obtained in each direction by propagating inten-

sities backwards in the image domain. In the back pro-

jection process, blurring inevitably occurs around the

object being imaged, requiring the introduction of a filter

to remove it. The iterative reconstruction method used

here involves statistical iterative reconstruction algorithm.

After comparing neighboring projections using a statistical

model to find projections that are either overly noisy or

photon-starving, which are replaced or modified so that

the data achieves maximum consistency. The modified

projection is assigned a lower weight to avoid potential

bias, so that the modified projection contributes less to the

reconstructed image than the unaltered projection. After

conversion to the image domain by FBP, the image data is

iteratively filtered using the statistical models of the noise

structure. To this end, edge-preserving filter is applied to

minimize the effect on the microstructure depiction and

low-contrast detail [11]. The deep learning-based recon-

struction method integrates an iterative reconstruction

algorithm with a DCNN model that has been trained in

the CT reconstruction task by pre-learning from a vast

number of images. DCNN acquires data under optimized

conditions and reconstructs high-quality CT images with

model-based iterative reconstruction (MBIR). In addition,

the DCNN trains image data corrupted by corresponding

artifacts and simulated noise at low doses. Finally, the

image is reconstructed using DCNN, a deep neural

network, by simultaneously learning the reconstructed

high-definition image by MBIR and the low-quality

image without noise removal. This method has the

advantage of reducing the image reconstruction time by

about 1/3 compared to the model-based iterative recon-

struction method while still achieving a high image

quality in the resulting reconstructions [12]. The image

reconstruction time of the CT used in this study was 15,

21, and 50 seconds, respectively, for FBP, IR, and DCNN

Fig. 1. Process diagrams for the filtered back projection (FBP), iterative reconstruction (IR), and deep convolutional neural network

(DCNN) image reconstruction algorithms.
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based on 1,000 image.

2.2. Image Acquisition Conditions

Table 1 shows the imaging conditions used in this

experiment. CT acquisitions (Aquilion ONE GENESIS,

Canon Medical Systems, Japan) of a human thorax

phantom (Lungman, Kyoto Kagaku, Japan) were used to

assess the image quality achieved through each of the

reconstruction approaches. The Lungman phantom simulates

the anatomical structure of the human thorax and includes

soft tissues, spine, ribs, and blood vessels. Acquisitions of

three phantom regions–the upper region including the

apex of the lungs, the middle region containing the heart,

and the lower region including the liver and diaphragm–

were performed under the same tube voltage, the same

slice thickness, and the same image matrix conditions.

For all CT images, the tube voltage was set to 100 kV, the

slice thickness was 1 mm, and the matrix of the CT

images was set to 512 × 512. In order to capture the

performance of each image reconstruction method under

varying dose levels, the CT images were acquired using

multiple scanning protocols. The CTDIvol of a lung CT

scan for a standard patient is recommended to be less than

3.0 mGy, while a CTDIvol of up to 5.6 mGy for larger

patients is recommended [13]. In this study, images were

taken at 0.4, 0.6, 2.7, and 7.1 mGy based on the CTDIvol

that is clinically applied to patient examinations at Wonju

Severance Christian Hospital. In another study, CTDIvol

in the range of 0.33 to 0.39 mGy was used for ultra-low

dose CT [14, 15], but the lowest CTDIvol used in practice

at Wonju Severance Christian Hospital is 0.4 mGy. This

dose is the minimum dose that can guarantee sufficient

image quality despite the ultra-low dose. In addition, 0.6

mGy is used for low-dose CT examinations, and the

standard CTDIvol for high-resolution CT imaging is

adopted as 2.7 mGy. A CTDIvol of 7.1 mGy is the highest

dose, which was set assuming that the patient was thick,

such as an overweight patient.

2.3. Image analysis method

We analyzed noise characteristics and the SNR for the

quantification of image quality in the upper, middle, and

lower phantom regions reconstructed through FBP, IR,

and DCNN. Noise characteristics were obtained by calcu-

lating the standard deviation of pixels in various regions-

of-interest (ROIs) selected in the upper, middle, and lower

Table 1. Parameters of CT scans for this study.

Parameters FBP Iterative Deep learning

Scan region Upper, Middle, Lower Upper, Middle, Lower Upper, Middle, Lower

Tube potential (kV) 100 100 100

Slice thickness (mm) 1 1 1

Image matrix 512 × 512 512 × 512 512 × 512

CTDIvol (mGy) 0.4, 0.6, 2.7, 7.1 0.4, 0.6, 2.7, 7.1 0.4, 0.6, 2.7, 7.1

Fig. 2. ROI selected in the upper, middle, and lower regions of the phantom images for calculating SNR values (upper row).

Dashed line selected in the upper, middle, and lower regions of the phantom images for image profiles (bottom row).
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regions of the phantom. As seen in Fig. 2 (upper row), the

SNR can be obtained by calculating the average value

and standard deviation of the pixels in the ROI of the

lung in the upper, middle, and lower images, and the

average value of the pixels in the ROI of the tissue

around the lung:

 (1)

where Mlung is the average value of the pixels in the lung

ROI, Mtissue is the average value of the pixels in the tissue

ROI, and SDlung is the standard deviation of the pixels in

the lung ROI. In Fig. 2 (upper row), A is ROI of signal,

and B is ROI of background for upper, middle, and lower

images, respectively.

3. Results and Discussion

Figure 3 shows examples of FBP, IR, and DCNN

images of the middle chest in the ultra-low dose setting

with a CTDIvol of 0.4 mGy (upper row) and the standard

dose condition with a CTDIvol of 2.7 mGy (bottom row).

As can be observed in Fig. 3, the FBP reconstruction is

greatly affected by noise when CTDIvol is 0.4 mGy but

less so at the standard CTDIvol of 2.7 mGy. The trends of

noise and SNR values in relation to changes in dose and

choice of image reconstruction algorithm are shown in

Figs. 4 and 5, respectively.

Figure 4 shows the noise values of FBP, IR, and DCNN

reconstructions computed with respect to dose changes.

Figure 4(a) shows the noise results of the upper region of

the phantom, (b) the middle region, and (c) the lower

region. In the images of all three phantom regions, the

noise tends to decrease as the dose increases. At the same

CTDIvol, the DCNN reconstruction is characterized by

the lowest noise, followed by IR and FBP. At the standard

CTDIvol dose of 2.7 mGy in Fig. 4(a), DCNN showed

noise reduction of about 81.4 % compared to FBP, and

noise reduction of about 39.4 % compared to IR. DCNN

showed a noise value of 17.90 at the ultra-low dose

CTDIvol of 0.4 mGy. At the standard CTDIvol of 2.7

mGy, the noise was reduced by about 67.0 % compared

to the FBP, and when the maximum CTDIvol was 7.1

mGy, the noise was reduced by 49.7 % with the adoption

of the DCNN over FBP.

Figure 4(b) shows the noise results according to the

dose in the image of the middle lung. At the standard

CTDIvol of 2.7 mGy, DCNN demonstrates a 51.9 %

noise reduction compared to FBP. At the ultra-low-dose

CTDIvol of 0.4 mGy, DCNN achieves a 4.8 % noise

reduction compared to FBP in the standard setting with a

CTDIvol of 2.7 mGy. However, one may observe that the

ultra-low dose of 0.4 mGy DCNN increased the noise by

about 38.7 % compared to the FBP at the maximum

CTDIvol of 7.1 mGy.

Figure 4(c) shows the changes in noise with the dose in

the image of the lower lung. At the standard CTDIvol of

2.7 mGy, DCNN showed a 41.8 % noise reduction com-

SNR = 
Mlung Mtissue–

SDlong

------------------------------------

Fig. 3. Chest CT images reconstructed with filtered back projection (FBP), iterative reconstruction (IR), and deep convolutional

neural network (DCNN) in the ultra-low-dose setting with a CTDIvol of 0.4 mGy (upper row) and the standard setting with a

CTDIvol of 2.7 mGy (bottom row).
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pared to FBP, and at the ultra-low-dose CTDIvol of 0.4

mGy, DCNN was able to achieve a 8.4 % noise reduction

compared to FBP in the standard setting with a CTDIvol

of 2.7 mGy. However, the ultra-low dose 0.4 mGy DCNN

increased noise by about 37.5 % compared to the FBP at

the maximum CTDIvol of 7.1 mGy. According to the

noise results in Fig. 4, at the standard CTDIvol dose,

DCNN shows a maximum noise reduction of 81.4 % and

a minimum of 41.8 % compared to FBP. In addition, it

was confirmed that the ultra-low dose CTDIvol 0.4 mGy

showed better performance than the standard CTDIvol 2.7

mGy FBP imaging.

Figure 5 shows the changes in the SNR of the FBP, IR,

and DCNN reconstructions with respect to dose changes.

Figure 5(a) shows the SNR result of the upper region of

Fig. 4. (Color online) Computed noise values plotted against

CTDIvol dose in reconstructions of the chest phantom in the

(a) upper, (b) middle, and (c) lower regions. 

Fig. 5. (Color online) Computed signal-to-noise ratio (SNR)

values plotted against CTDIvol dose in reconstructions of the

chest phantom in the (a) upper, (b) middle, and (c) lower

regions.
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the phantom, (b) the middle part, and (c) the lower part.

As the dose increases, the SNR tends to increase in most

of the reconstruction results. At the same CTDIvol, the

DCNN achieves the highest SNR, followed by IR and

FBP.

Figure 5(a) shows the SNR result according to the dose

change in the upper lung image. At the standard CTDIvol

of 2.7 mGy, the SNR of DCNN was increased by about

431.8 % compared to that of FBP in the same dose

setting. The result of the DNCC in the ultra-low-dose

setting showed an increase in SNR of about 193.8 %

compared to FBP in the standard setting with a CTDIvol

of 2.7 mGy. Even compared with FBP at the maximum

CTDIvol of 7.1 mGy, the SNR of the ultra-low-dose

DCNN reconstruction was increased by about 96.7 %.

Figure 5(b) shows the SNR results according to the

dose in the image of the middle lung. At the standard

CTDIvol of 2.7 mGy, DCNN showed a 106.7 % increase

in SNR compared to FBP, and at the ultra-low-dose

CTDIvol of 0.4 mGy, DCNN achieved a 3.2 % increase

in SNR compared to FBP at the standard CTDIvol of 2.7

mGy. However, the ultra-low-dose DCNN reconstruction

reduced the SNR by about 28.1 % compared to the FBP

at the maximum CTDIvol of 7.1 mGy.

Figure 5(c) shows the SNR results according to the

dose in the image of the lower lung. At the standard

CTDIvol of 2.7 mGy, DCNN showed an increase in SNR

of about 71.8 % compared to FBP, and at the ultra-low-

dose CTDIvol of 0.4 mGy, DCNN achieved an increase

of about 8.0 % compared with FBP at the standard

CTDIvol of 2.7 mGy. However, the ultra-low dose of 0.4

mGy DCNN showed a 26.6 % reduction in SNR compared

to FBP at the maximum CTDIvol of 7.1 mGy. According

to the SNR results in Fig. 5, at the standard CTDIvol,

DCNN showed a maximum SNR increase of 431.8 % and

a minimum of 71.8 % compared to FBP. In addition, the

DCNN at the ultra-low dose CTDIvol of 0.4 mGy achieved

better performance than FBP at the standard CTDIvol of

2.7 mGy.

This study quantitatively analyzed the effect on image

quality of a deep learning-based reconstruction algorithm

in ultra-low-dose chest CT to prove the possibility of

future clinical applications. Depending on the location of

the lungs, the image quality is different due to the artifacts

caused by the bones around the lungs. Therefore, images

of the upper, middle, and lower of the lungs were acquired

because it was necessary to evaluate the image quality by

level of the lungs. In clinical lung CT examination, the

LD is set to approximately 1.2-1.5 mGy. In this study, the

ULD was set to 0.4 mGy, which is about 1/3 lower than

the LD. The reference dose for evaluating the image

quality was set as the standard CTDIvol of 2.7 mGy for

high-resolution CT imaging. The DCNN in the ultra-low-

dose setting with a CTDIvol of 0.4 mGy showed superior

performance in terms of noise reduction and SNR

improvements compared to FBP in the standard setting

with a CTDIvol of 2.7 mGy. This result means that when

the deep learning reconstruction method is applied during

CT examination, a dose reduction effect of at least about

85 % can be expected.

One of the advantages of deep learning image recon-

struction is that it can reduce the image noise. As shown

in Fig. 6, the FBP image in the ultra-low-dose setting

with a CTDIvol of 0.4 mGy suffers from persistent recon-

struction artifacts. This can make it difficult to distinguish

noise from lesions such as pulmonary fibrosis. The deep

learning algorithm can facilitate the discrimination of

lung lesions by removing noise from the reconstructed

lung image. Noise is also evaluated with image profile as

seen in Fig. 2 (bottom row) dashed line. The profile

Fig. 6. Reconstructed images of the upper lung produced through filtered back projection (FBP), iterative reconstruction (IR), and

deep convolutional neural network (DCNN) under a CTDIvol of 0.4 mGy for ultra-low-dose (ULD) CT.
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results are plotted in Fig. 7. Figures 7(a), (b), and (c)

show the profile results measured in the upper, middle,

and lower regions of the images acquired at an ULD

setting with a CTDIvol of 0.4 mGy. According to the

results, in all images, DCNN reduced noise effectively.

In general, a tube voltage of 120 kV is a common

parameter choice in CT examinations. In this study, all

images were acquired using a tube voltage of 100 kV.

Since the radiation dose is roughly proportional to the

square of the tube voltage, reducing the tube voltage can

potentially reduce the radiation dose significantly. However,

with the current technology, there is a limiting lower

threshold for the tube voltage. For example, significant

image quality deterioration has been reported due to beam

hardening of the intravascular contrast medium during 80

kV imaging [16]. According to the results of the study by

Fanous et al., it is reported that reducing the tube voltage

from 120 kV to 100 kV can reduce the radiation dose

without significantly affecting the diagnostic image quality

[17]. Therefore, in this study, a tube voltage of 100 kV

was used, and it was confirmed that the deep learning-

based image reconstruction method achieved great improve-

ments in image quality.

A major limitation of our study is that the experimental

conditions were limited by the geometry of the phantom

to “average” patients. Imaging conditions for a patient

with a thick body type were considered here with a

CTDIvol up to 7.1 mGy, but the thickness of the phantom

was unchanged, so it is difficult to accurately evaluate the

image quality in the case of a larger patient. Therefore,

further research is needed to improve the image quality of

deep learning-based ultra-low-dose CT according to the

thickness of the patient.

4. Conclusions

This study confirmed the superiority of the deep learn-

ing image reconstruction algorithm. The deep learning

reconstruction has a significant noise reduction effect at

low dose. Compared to the FBP and iterative reconstruc-

tion methods, the deep learning-based reconstruction

method showed superior performance even in ultra-low-

dose situations. In particular, the deep learning method

provided superior image quality in terms of SNR than that

of FBP in imaging of the upper lung region with severe

bone streak artifact. Such a method is expected to offer a

dramatic reduction of the patient's dose without signifi-

cantly affecting the quality of the diagnostic image. In

addition, the reduction of the image reconstruction time

of deep learning due to the development of computing

power can help in rapid examination, which is important

in actual clinical imaging. According to the results of this

study, the deep learning method is thought to contribute a

lot to improving the image quality while reducing the

radiation dose in clinical CT examinations.
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