
Journal of Magnetics 24(2), 212-216 (2019) https://doi.org/10.4283/JMAG.2019.24.2.212

© 2019 Journal of Magnetics

A Comparative Study on Estimation Methods for Statistical 

Moments of Electromagnetic Performance Functions

Byungsu Kang1, Jaegyeong Mun1, Jongsu Lim1, K. K. Choi2, and Dong-Hun Kim1*

1Dept. of Electrical Eng., Kyungpook National Univ., Daegu 41566, Republic of Korea
2Dept. of Mechanical and Industrial Eng., Univ. of Iowa, Iowa City, IA 52242-1527, USA

(Received 10 May 2019, Received in final form 15 June 2019, Accepted 21 June 2019)

A performance moment integration method is proposed to accurately estimate the first two statistical moments,

mean and variance, of electromagnetic performance functions in the present of uncertainties. To maximize

computational efficiency, its numerical integration is executed not on the input design domain but on the out-

put performance domain, where quadrature points are explored by the first order reliability analysis method.

For better understating between statistical moment analysis methods, two different numerical integration

schemes of dimension reduction method and performance moment integration method are compared with each

other. Finally, a mathematical model and a loudspeaker design model are tested to demonstrate the features of

two methods and to examine their numerical accuracy and efficiency.
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1. Introduction

Incorporation of uncertainties into an early design stage

has become increasingly important to produce robust

electromagnetic (EM) devices or systems. In robust

design, the product quality can be described by use of the

first two statistical moments of an EM performance

function: mean and variance. Therefore, it is necessary to

develop accurate and efficient numerical methods, which

can estimate the two statistical moments of the perfor-

mance function and their sensitivities. In accordance with

this demand, various attempts such as worst-case scenario,

experimental design technique, Monte Carlo Simulation

(MCS), dimension reduction method (DRM) and so on

have been made in our community to date [1-9]. They all

focus on improving the product quality through minimiz-

ing variability of the output performance function.

Among them, it has been revealed that only two

numerical techniques of MCS and DRM can quantita-

tively assess the first two statistical moments of EM-

related performance functions [4-7]. However, both of

them have individual merits and demerits when applied to

real-world engineering problems. The MCS could be

accurate for the moment estimation, but it requires a huge

number of function evaluations, which is apt to cause an

unacceptable computation cost [5]. To alleviate the above

difficulty, the univariate DRM in [7] was introduced to

evaluate the statistical moments and their sensitivities of

EM performance functions. Therein any n-dimensional

function is additively decomposed into one-dimension

ones, and then moment-based numerical integration is

conducted on the input design domain (i.e. system input).

The method can yield satisfactory results on relatively

low dimensional functions, but its computational cost

rapidly increases as the dimension is getting higher.

To overcome the difficulty in DRM, this paper proposes

the performance moment integration (PMI) method,

which can directly identify uncertainty propagation in EM

performance functions. Unlike the DRM, the statistical

moments of the performance function are evaluated

through a numerical integration on the output performance

domain (i.e. system output). The method basically makes

use of three-level numerical integration scheme, and

accordingly three quadrature points are sought out by the

first order reliability analysis on the output domain.

Through testing a mathematical example and a loudspeaker

design problem, numerical accuracy and efficiency of the

proposed method is examined by comparison with the

existing univariate DRM.
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2. Evaluation of Statistical Moments 
and Their Sensitivities

The main concern of quality management for EM

products is how accurately and efficiently the statistical

moments and their sensitivities of the performance

function h(x) can be estimated. The kth statistical moment

of h(x) is analytically obtained from the following

integration:

 (1)

where fx(x) is a joint probability density function (PDF)

of a design random variable vector x. Especially when the

dimension of h(x) is relatively high, it is practically

impossible to calculate the multiple integration of (1). To

tackle this difficulty, two different integration schemes are

explained. 

2.1. Univariate DRM on Input Domain

The univariate DRM additively decomposes any N-

dimensional performance function into one-dimension

ones on the input design domain [5, 7]:

(2)

where i is the mean value of the ith random variable xi,

and N is the number of random variables. The one-

dimensional numerical integration can be computed by

using the moment-based integration rule (MBIR) [5],

which is similar to Gaussian quadrature. According to the

rule, the kth statistical moment of a one-dimensional

function is written by

 (3)

where w j is the weight factor, x j is the quadrature point,

and n is the number of weights and quadrature points.

Providing that the PDF of random variables is given, the

weights and quadrature points comply with MBIR. For

random variables with standard normal probabilistic

distributions, three quadrature points and weights are

presented in Table 1.

Using (2) and (3), the mean mh and variance  of h(x)

is expressed as

 (4)

(5)

where  and  mean the jth weight factor and

quadrature point for the ith random variable xi,

respectively. In case of implementing robust design

optimization (RDO), not only t the first two statistical

moments but also their sensitivities are needed [5], [7].

By applying the partial derivative to (4) and (5), the

sensitivities of two statistical moments at the kth design

variable (dk = μk) are derived as follows:

(7)

 (8)

After all, the sensitivities of statistical moments can be

approximated with the derivative of decomposed one-

dimensional functions.

2.2. PMI on Output Domain

The random variable vector x can be transformed to the

standard normal random variable vector u. That is, h(x) in

X-space is mapped onto h(T(x)) ≡ h(u) in U-space, where

the joint PDF fx(x) is equal to фu(u). Accordingly, the

multi-dimensional integral of (1) can be rewritten in terms

of the output distributions on the output performance

domain as 

 (9)

where fh(h) is a joint PDF of h(u). Similar to the

univariate DRM, PMI also makes use of three quadrature

points and weights to approximate the one-dimensional

integration in (9). Using the three-level numerical integ-

ration in Table 1, the mean and variance of the output

performance is discretized by 

 (10)
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Table 1. Three Quadrature Points and Weights for a Standard

Normal PDF.

Quadrature points Weights

x1 x2 x3 w1 w2 w3

0 1/6 4/6 1/63– 3
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 (11)

where  and  mean performance function

values at two most probable failure points (MPP) obtain-

ed through reliability analyses at a confidence level of

 as illustrated in Fig. 1. Therein, the origin in U-

space is corresponding to the mean vector μx of x.

The function values at MPPs in U-space can be defined

using the inverse reliability analysis called performance

measure approach (PMA) like (2) as in [8].

 (12)

The solution of (12) is denoted as , and also the

result obtained by minimizing h(u) in (12) is denoted as

. Similar to the sensitivity calculation in DRM, the

sensitivities of the mean and variance of the performance

function with respect to the design variable mk are easily

derived as follows.

 (13)

 

(14)

where  and  is given by transforming the two

MPPs obtained from (12) into X-space, respectively.

A difference between two moment integration schemes

is that quadrature points of the univariate DRM lie on the

x-axis, whereas quadrature points of PMI lie on the MPP

locus as in Fig. 1. Therefore, the number of quadrature

points of the univariate DRM increases as the number of

design random variables is getting large, whereas the

number of quadrature points of PMI does not change

since the integration is carried out in the output perfor-

mance space.

3. Case Studies

To investigate the accuracy and efficiency of the pro-

posed PMI method, two RDO problems are considered.

Therein, the design target is to minimize a quality loss

function expressed in terms of the first two statistical

moments. The first is a ten-dimensional mathematical

model, and the second is loudspeaker design problem

with seventeen design random variables as a practical EM

design problem.

3.1. Mathematical Model

The RDO formulation of a mathematical test problem

with ten design random variables is given as follows. 

(15)

where f is the quality loss function defined by the mean

h and standard deviation (SD) σh of h, and w1 and w2 are

weight factors of 0.1 and 0.9, respectively. The symbols,

h0 and σh0, are nominal mean and SD values of h at an

initial point. It is assumed that the random variables

comply with standard normal probability distributions,

and their SD values are shown in Table 2. 

Starting with the same initial point, the RDO problem

of (15) was solved twice by each of the univariate DRM

and the proposed PMI. Performance indicators between

three different points are presented in Table 2, where

exact mean and SD values of h were obtained from MCS.

It is observed that two RDO optima converge towards one

point, and their quality loss function values are reduced

by nearly 10 % compared to the initial one. The estimated

mean and SD values at the two RDO optima show a good

agreement to exact ones within the maximum error of

2.74 %. Meanwhile, it is obvious that the proposed PMI

saves the computational cost required for the univariate

DRM by 53.2 % even though the same iterative designs

are carried out during the both RDO processes. 

2 2 2 2 2

3 3
1 4 1( )

6 6 6h hh h h
 

 
 

   
x

μ

3
h
  3

h
 

3 

maximize ( )

subject to 3.

h

 

u

u

3
h
 

3
h
 

1 ( ) 4 ( ) 1 ( )
| | |

6 6 6MPP MPP

h

k k k k

h h h

x x x




 


 

   
  

   
x

x μx x x x

x x x

2 22 2 21 ( ) 4 ( ) 1 ( )
| | |

6 6 6MPP MPP

h h

k k k k k

h h h

x x x

 

 
 


 

   
   

    
x

x μx x x x

x x x

MPP



x
MPP



x

2 2 2

1 0 2 0

2 2 2 2

1 2 1 2 1 2 3 4

2 2 2 2 2

5 6 7 8 9

2

10

1 1 2 7 8

2

2 1

minimize  ( , ) ( / ) ( / )

( ) 14 16 ( 10) 4( 5)

( 3) +2( 1) 5 7( 11) 2( 10)

( 7) 45

subject to    ( ) = 4 5 3 9 105 0

( ) = 3( 2)

h h h h h h
f w w

h x x x x x x x x

x x x x x

x

g x x x x

g x

      

        

       

  

    

 

x

x

x
2 2

2 3 4

2 2

3 1 2 1 2 5 6

2

4 1 2 9 10

4( 3) 2 7 120 0

( ) = 2( 2) 2 14 6 0

( ) = - 3 6 12( 8) 7 0

x x x

g x x x x x x

g x x x x

    

     

    

x

x

Fig. 1. Illustration of three quadrature points and MPP locus.
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3.2. Loudspeaker Model

Fig. 2 depicts the configuration of a loudspeaker con-

sisting of a steel yoke and a permanent magnet [9]. The

design goal is to minimize the quality loss function f

concerned with the average air-gap flux density Bag subject

to the constraint for a loudspeaker mass M as in (16). 

 (16)

where weight factors of w1 and w2 are set to be 0.1 and

0.9, respectively, and the target mass Mt is 7.5 kg. It is

assumed that the seventeen design random variables follow

to normal probability distributions, of which SD values

are given in Table 3. To take into account a nonlinear B-H

curve of the steel yoke, the performance function h was

computed by means of a commercial finite element analysis

(FEA) tool, called MagNet [10]. The main optimization

program was implemented by means of Matlab functions,

of which a function call remotely executed MagNet.

Therein, the statistical moments and their sensitivities of h

were calculated from FEA results as described in [7].

To relieve a heavy computational burden on the RDO

process, the deterministic optimum in [9] is considered as

an initial design. Two moment values, h0 and σh0, in (16)

were calculated at the initial design point. Launching at

the same point, two RDO optima were obtained by the

univariate DRM and proposed PMI, respectively. The two

optima are very close to each other, and Fig. 3 compares

loudspeaker contours between the initial and RDO loud-

speaker designs.

Table 4 shows the performance indicators between three

different designs (initial and two RDO designs). The

estimated mean and SD values at the two RDO optima

show a good agreement to each other, and their quality

loss functions are reduced by nearly 70 % compared to

the initial one. On the other hand, the same three iterative

designs were needed to obtain two RDO designs, whereas
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Table 2. Performance Indicators between Two Different

Moment Integration Schemes.

SD Initial

RDO

Univariate 

DRM

Proposed

PMI

x1 0.1 2.03 1.98 1.98

x2 0.1 3.15 3.06 3.06

x3 0.6 8.15 8.59 8.58

x4 0.1 5.22 5.37 5.34

x5 0.1 1.04 1.03 1.03

x6 0.1 1.42 1.41 1.41

x7 0.6 1.00 1.00 1.00

x8 0.1 10.95 10.85 10.87

x9 0.6 7.87 8.65 8.69

x10 0.1 8.70 10.86 10.82

 Performance function h 11.41 17.96 16.32

Mean 

(h)

Estimated - - 21.01 20.61

Exact - 14.46 21.01 20.55

 SD (h)
Estimated - - 7.45 7.68

Exact - 8.73 7.66 7.65

Quality loss function f - 1 0.90 0.89

Iterative designs/

Function calls
- - 4/252 4/118

Exact solutions were recalculated at three different design points by
MCS with 1,000,000 samples.

Fig. 2. (Color online) Two-dimensional axisymmetric configu-

ration of a loudspeaker.

Table 3. Properties of Design Random Variables in (16).

Variable
Initial value

(μ(xi) mm)
SD Variable

Initial value 

(μ(xi) mm)
SD

x1 18.95 0.1 x10 1.52 0.05

x2 17.80 0.1 x11 1.26 0.05

x3 18.21 0.1 x12 16.22 0.05

x4 1.44 0.05 x13 0.81 0.01

x5 5.54 0.05 x14 1.63 0.05

x6 1.02 0.05 x15 6.86 0.05

x7 1.73 0.05 x16 7.37 0.05

x8 0.58 0.01 x17 3.18 0.05

x9 2.34 0.05 - - -

Fig. 3. Contours of two loudspeaker designs.
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the numbers of FEA simulations make a big difference

with each other by 55.2 %. This implies that the proposed

PMI is more efficient than the univariate DRM in

computing the statistical moments and their sensitivities

during the RDO process. However, such numerical

improvement in seventeen-dimensional problem does not

come up to our expectation when compare to the ten-

dimensional mathematical problem. From the fact, it can

be deduced that the number of FEA simulations to

explore two MPP points in the proposed PMI process

increases as the number of design random variables

increases.

4. Conclusion

This paper proposes a PMI method to efficiently estimate

statistical moments and their sensitivities required for

RDO. Results show that the proposed method can sub-

stantially save a computational cost without scarifying

numerical accuracy, especially when dealing with multi-

dimensional EM performance functions.

Acknowledgment

This research was supported by Basic Science Research

Program through the National Research Foundation of

Korea (NRF) funded by the Ministry of Education, Science

and Technology (2017R1A2B4008046), and also was

supported by the Korea Institute of Energy Technology

Evaluation and Planning (KETEP) and the Ministry of

Trade, Industry & Energy (MOTIE) of the Republic of

Korea (No. 20174030201490).

References

[1] F. Guimaraes, D. Lowther, and J. Ramirez, IEEE Trans.

Magn. 42, 1207 (2006).

[2] N. Kim, D. Kim, H. Kim, D. Lowther, and J. Sykulski,

IEEE Trans. Magn. 46, 3117 (2010).

[3] X. Liu, S. Wang, J. Qiu, J. Zhu, Y. Guo, and Z. Lin,

IEEE Trans. Magn. 44, 978 (2008). 

[4] N. Sengil, IEEE Trans. Plasma Sci. 41, 1156 (2013).

[5] I. Lee, K. Choi, L. Du, and D. Gorsich, J. Comput. &

Struct. 86, 1550 (2007)

[6] Y. H. Sung, D. Kim, and D. Kim, IEEE Trans. Magn. 47,

4623 (2011).

[7] D. Kim, N. Choi, C. Lee, and D. Kim, IEEE Trans.

Magn. 51, 7016804 (2015).

[8] B. Kang, D. Kim, K. Choi, and D. Kim IEEE Trans.

Magn. 53, 7000604 (2017).

[9] B. Kang, D. Kim, H. Cho, K. Choi, and D. Kim, IEEE

Trans. Magn. 53, 7000904 (2017).

[10] MagNet User’s Manual, Infolytica Corporation, Quebec,

Canada, 2008.

Table 4. Performance Indicators between Two Different

Moment Integration Schemes.

Initial

RDO

Univariate 

DRM

Proposed 

PMI

Performance function h 1.803 1.790 1.790

Mean (h) 1.811 1.804 1.791

SD (h) 0.022 0.010 0.011

Quality loss function f 1 0.298 0.323

Iterative designs/FEA calls - 3/210 3/94


