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We theoretically and numerically investigate ferrimagnetic domain wall motion driven by damping-like spin-

orbit torque. We find that the damping-like spin-orbit torque combined with the interfacial Dzyaloshinskii-

Moriya interaction efficiently drives the ferrimagnetic domain wall especially at the angular momentum com-

pensation point. We obtain the analytic expression of the domain wall velocity with respect to the current den-

sity and the net spin density, which is in agreement with numerical simulation. The analytic expression is

applicable to arbitrary compensation conditions, ranging from the ferromagnetic limit to the antiferromag-

netic limit, and is thus useful to design and interpret ferrimagnetic domain wall experiments at various tem-

peratures or compositions.
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1. Introduction

Magnetic domain walls can be used as information

carriers and enable the realization of magnetic logic and

storage devices [1, 2]. The domain wall motion is induced

by magnetic fields [3, 4], propagating spin waves [5-10],

spin-transfer torques [11-13], and spin-orbit torques [14-

16]. Among them, the electrical means (i.e., spin-transfer

torques and spin-orbit torques) is adequate for practical

applications because it moves multiple domain walls in

the same direction at a relatively high speed. Two essential

requirements for high-density and energy-efficient domain

wall devices are the small-sized domain wall and its fast

motion [17]. The small-size requirement favors to use

perpendicular domain walls [18, 19]. On the other hands,

the high-speed requirement leads to a recent interest in

the spin-orbit torque originating from the spin-orbit

interaction in magnetic/non-magnetic heterostructures

[20-28]. In particular, recent theoretical and experimental

studies emphasize the importance of three-dimensional

spin transport to understand spin-orbit torques in hetero-

structures [29-36].

The spin-orbit torque combined with the interfacial

Dzyaloshinskii-Moriya interaction (DMI) drives magnetic

domain walls efficiently [14-16]. In case of ferromagnetic

domain walls, the spin-orbit torque tilts the domain wall

angle so that the ferromagnetic domain wall velocity

saturates with increasing the current density [14]. This

velocity saturation can be avoided by employing anti-

ferromagnetic domain walls, as the domain wall angle is

completely decoupled from the domain wall position and

thus does not tilt [37]. Despite the outstanding advantage

of the antiferromagnetic domain walls, the manipulation

and the detection of antiferromagnetic spin textures in

true antiferromagnets are challenging because of zero net

magnetic moment. A way to partially overcome this

challenge is to use synthetic antiferromagnets [38, 39]

where the net magnetic moment varies with the thick-

nesses of two ferromagnets coupled antiferromagnetically.

However, perfect antiferromagnetic textures in synthetic

antiferromagnets still suffer from zero net moment.

In our previous work [40], we focused mainly on the

field-driven domain wall motion in rare-earth (RE)-

transition metal (TM) ferrimagnets and addressed the

damping-like-torque-driven ferrimagnetic domain wall

motion only at the angular momentum compensation point.

When driven by a damping-like torque, the ferrimagnetic

domain wall velocity at the angular momentum compen-
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sation point is found to be qualitatively identical to the

antiferromagnetic domain wall velocity [37, 40]. In this

work, we report a theoretical study on detailed ferri-

magnetic domain wall dynamics driven by damping-like

torque for arbitrary compensation conditions. The field-

like torque directly competes with the antiferromagnetic

exchange torque that is usually much stronger than the

field-like torque. As a result, we neglect the field-like

torque in our study. We believe that a theoretical

prediction for arbitrary conditions is important to design

domain wall experiments and to interpret experimental

results for the fundamental understanding of ferrimagnetic

domain wall dynamics and the improved performance of

ferrimagnetic domain wall devices.

We first derive the equations of motion for ferrimag-

netic domain wall with the collective coordinate approach

[40-44]. To start with the continuum approximation, we

define the staggered vector n = (m1−m2)/2 and the

magnetization vector m =m1 +m2, where m1 and m2 are

the unit vectors of magnetic moments at two sublattices

(RE and TM). The sublattice i has the magnetic moment

Mi and the magnitude of the spin density si =Mi/γi, where

 is the gyromagnetic ratio, μB is the Bohr

magneton, and gi is the Landé-g factor. We define

, and the net spin density .

The general Lagrangian density  for ferrimagnets is

described by [40, 41, 45]

  (1)

where ρ parametrizes the inertia of the dynamics, a[n] is

the vector potential generated by a magnetic monopole of

unit charge satisfying , and  is the potential

energy density. The first term on the right-hand side is the

spin Berry phase associated with the staggered spin

density, and the second term is the Berry phase associated

with δs. We consider the potential-energy density

including the interfacial DMI as

  (2)

where a and A are the homogeneous and inhomogeneous

exchange energy constants, respectively, K is the easy-

axis anisotropy energy constant, κ is the hard-axis

anisotropy constant, and D is the interfacial DMI energy

constant. We introduce the Rayleigh dissipation function

for the energy dissipation as , where α is the

Gilbert damping constant.

From the Lagrangian density and Rayleigh dissipation

function, we obtain the equations of motion for n and m.

Including the damping-like torque, two equations of

motion for n and m are given as

  (3)

 (4)

where , ,

, , θSH is the

effective spin Hall angle, J is the current density, e is the

charge, and tz is the thickness of ferrimagnetic layer. Here

Tn and Tm are obtained from the damping-like torque

term for the discrete spin model, 

, where  is the effective

field for the damping-like torque.

We introduce the collective coordinates for the domain

wall position X and the domain wall angle φ, with the

ansatz for the wall profile [46]: 

, where  and

λ is the domain wall width. By proceeding with the same

manner as in Ref. [40], we obtain two equations of

motion:

(5)

 (6)

Here  is the mass,  is the moment

of inertia,  is the gyrotropic coefficient,

 is the relaxation time, , ,

and  is the cross-sectional area of the domain wall.

One finds from Eqs. (5) and (6) that the domain wall

position X and angle φ are coupled through the gyrotropic

coefficient G, which is proportional to δs. When δs is

nonzero, the translational motion of domain wall is

inevitably combined with the precession motion of domain

wall. In other words, the angular momentum supplied by

the damping-like torque is used not only to move a

domain wall but also to rotate a domain wall angle. On

the other hands, when δs is zero, the angular momentum

gain is used only for the domain wall motion because φ

does not change with time. From Eqs. (5) and (6), we

obtain the steady-state solution for domain wall velocity

vDW, which is the central result in this paper, as

  (7)

which φst is the steady-state solution of φ. We note that

Eq. (7) is general and applicable not only to ferrimagnetic

domain walls but also to ferromagnetic or antiferro-

magnetic domain walls. The ratio of the net spin density

δs to s describes the degree of ferromagneticity. When
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, it approaches the ferromagnetic limit. On

the other hands,  indicates the antiferro-

magnetic limit. One can conceptually understand the

features of ferrimagnetic domain wall dynamics driven by

damping-like torque by analyzing Eqs. (5), (6), and (7). In

the strong DMI limit, the domain wall angle in the

absence of the current is 0 or π (thus, ).  In the

ferromagnetic limit, the domain wall angle increases with

the current density J so that  decreases with

increasing J. Combined with the linear increase of  in

Eq. (7), the domain wall velocity saturates as the current

increases [14]. This correlation is mediated by the

gyrotropic coefficient G that couples  with  in Eqs.

(5) and (6). In the antiferromagnetic limit, however, this

coupling is absent because G = 0. As a result, the domain

wall velocity can increase linearly with the current, which

is analogous with the case of true antiferromagnetic

domain walls [37].

To verify Eq. (7), we conduct numerical calculations

with the atomistic Landau-Lifshitz Gilbert equation

including the damping-like torque:

  (8)

where  is the effective field, μi is

the magnetic moment per atom, and Si is the normalized

spin moment vector at lattice site i. The one-dimensional

discrete Hamiltonian  is given by

 (9)

where Asim is the exchange constant, Ksim is the easy-axis

anisotropy, κsim is the hard-axis anisotropy, and Dsim is the

DMI constant. The relations for the material parameters

between Eqs. (2) and (9) are A = 4Asim/d, a = 4Asim/d
2,

K = 2Ksim/d
3, κ = 2κsim/d

3, and D = 8Dsim/d
2. We use the

following parameters for numerical simulations: Asim =

7.5 meV, Ksim = 0.08 meV, κsim = 0.08 μeV, Dsim = 0.05

meV, α = 0.02, θSH = 0.1, and gTM(RE) = 2.2(2.0) [47]. The

thickness of ferrimagnetic layer and lattice parameter

tz = d = 0.4 nm. The magnetic moments MTM,RE used in

the numerical calculations are shown in Table 1.

Figure 1 shows the velocity of ferrimagnetic domain

wall as a function of δs at various current densities.

Symbols obtained from numerical calculation are in good

agreement with the analytical solution, Eq. (7). In low

current regime, the velocity is almost constant, whereas in

high current regime (  A/m2) it shows the

maximum at the angular momentum compensation point

(i.e., δs = 0). The velocity gradually decreases with

increasing . Figure 2 shows the domain wall angle φ

as a function of δs at various current densities. The DMI
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Table 1. The magnetic moments MTM for the transition metal
element and MRE for the rare-earth element, used in the numer-
ical calculation. Index represents the parameter set for each
case. Index 4 corresponds to the angular momentum compen-
sation condition.

Index 1 2 3 4 5 6 7

MTM (kA/m) 910 900 890 880 870 860 850

MRE (kA/m) 860 840 820 800 780 760 740

δs (10
−7 J·s/m3) −1.86 −1.24 −0.62 0 0.62 1.24 1.86

Fig. 1. (Color online) The domain wall velocity  as a
function of the net spin density δs.  Symbols are the numerical
results, and the solid lines represent Eq. (7). The DMI constant
is Dsim = 0.05 meV.

DW
v

Fig. 2. (Color online) The domain wall angle φ as a function
of the net spin density δs. Solid lines are for the case of Dsim =
0.05 meV, and dashed lines are for the case of Dsim = 0.5 meV.
All data are obtained from the numerical calculation.
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sets the initial angle as φ = 0 for these calculations. There

is no domain wall angle tilting at the angular momentum

compensation point (i.e., = 0). For nonzero , the

domain wall angle tilting increases with . For a positive

(negative) δ
s
, the domain wall angle φ tilts counter-

clockwise (clockwise). The large DMI suppresses the

angle tilting strongly. All these features shown in Figs. 1

and 2 are consistent with the conceptual explanation

given above.

To summarize, we study the dynamics of ferrimagnetic

domain wall driven by damping-like spin-orbit torque for

arbitrary compensation conditions. The maximum of

domain wall velocity appears at the angular momentum

compensation condition (δ
s
= 0). This tendency is caused

by the fact that  and  are completely decoupled at the

angular momentum compensation point. In other words,

the domain wall angle φ does not vary with the damping-

like torque at this condition. Therefore, the domain wall

velocity can increase linearly with the current for δ
s
= 0 as

for the case of antiferromagnet in Ref. [37]. It is worth-

while to compare field-driven dynamics of ferrimagnetic

domain wall to damping-like-torque-driven one. In Ref.

[40], field-driven domain wall velocity at the angular

momentum compensation condition can be maximized in

the high-field regime as well. In this case, domain wall

velocity increases linearly because of no Walker break-

down phenomenon, resulted from the decoupling between

 and  at the angular momentum compensation

condition. We derive an explicit analytic expression of

domain wall velocity and verify its applicability by com-

paring to numerical results. We expect that the analytic

expression will be useful for both fundamental physics

and applications since it provides a way to estimate

essential physical parameters from experimental results

and to design practical domain wall devices employing

ferrimagnets, especially when the compensation is an

important variable.
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