Magnetic and Electrical Properties of Spinel Copper Ferrite Thin Films

Kwang Joo Kim¹, Jongho Park¹, and Jae Yun Park^{2,3*}

¹Department of Physics, Konkuk University, Seoul 05029, Republic of Korea ²Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea ³Research Institute for Engineering and Technology, Incheon National University, Incheon 22012, Republic of Korea

(Received 21 October 2017, Received in final form 17 January 2018, Accepted 19 January 2018)

Copper ferrite ($Cu_xFe_{3-x}O_4$) thin films synthesized on α -Al₂O₃(0001) substrates exhibited the spinel structure for Cu compositions up to x = 1.0. The substituent Cu ions exhibited charge valence of +2, occupying both the tetrahedral and the octahedral sites of the spinel lattice. Magnetic hysteresis measurements on the Cu_xFe_{3-x}O₄ films revealed gradual loss of saturation magnetization (M_s) with increasing x: M_s is reduced to ~50 % that of Fe₃O₄ for x = 1.0. The electrical resistivity (ρ) of the Cu_xFe_{3-x}O₄ films increased with x: ρ for x = 1.0 is larger by a factor of 30 than that of Fe₃O₄. The evolution of the magnetic and electrical properties of Cu_xFe_{3-x}O₄ can be explained in terms of the competition between the tetrahedral and octahedral Cu²⁺ density for ferrimagnetic moment and polaronic conduction.

Keywords : copper ferrite, sol-gel, ferrite thin film, magnetization, electrical resistivity

1. Introduction

Ferrimagnetic oxide compounds have been drawing a wide range of research interest for their remarkable magnetic and electronic properties for diverse potential applications including information storage, magnetic sensing, microwave absorption, and biomedicine [1-4]. Recently, ferrimagnetic oxides with chemical and thermal stability were reported to be viable anodes for lithium recharge-able batteries [5, 6].

In the spinel lattice of ferrimagnetic oxides, magnetic ions such as Fe²⁺ and Fe³⁺ are distributed over crystallographically distinct tetrahedral 8*a* (A) and octahedral 16*d* (B) sites surrounded by relatively larger O²⁻ ions at 32*e* sites. As the oldest ferrite known to mankind, magnetite (Fe₃O₄) has the inverse-spinel structure in which the A sites are occupied by Fe³⁺ ions, whereas the B sites are equally populated by Fe³⁺(d^5) and Fe²⁺(d^6) ions. The angle A-O-B is closer to 180° than those of B-O-B and A-O-A, thus, the Fe³⁺(A)-Fe²⁺(B) pair is under a superexchange interaction (J_{AB}) with anti-parallel spins, while the Fe³⁺(B)-Fe²⁺(B) pair is under a double-exchange interaction (J_{BB}) with parallel spins [7]. The ferrimagnetism becomes prominent when J_{AB} is stronger than J_{BB} . Inverse spinel Fe₃O₄ is also known as a good electrical conductor with the conductivity increasing with increasing temperature [8]. There have been reports wherein the electrical conduction in Fe₃O₄ could be understood in terms of polaronic electron hopping between Fe²⁺(B) and Fe³⁺(B) sites [9, 10].

When a number of Cu ions substitute the cationic sublattice of Fe₃O₄, the resultant Cu_xFe_{3-x}O₄ is likely to have electronic and magnetic properties evolved from those of Fe₃O₄. The charge valence and preferred cationic site of the substituent Cu ions are considered as mainly affecting the site distribution and density of Fe²⁺ and Fe³⁺ ions, leading to a variation in the physical properties of Cu_xFe_{3-x}O₄ from those of magnetite.

In this work, thin-film $Cu_xFe_{3-x}O_4$ with phase purity were synthesized using a sol-gel technique up to x = 1.0. The structural, magnetic, and electrical properties of the $Cu_xFe_{3-x}O_4$ thin films were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometry (VSM), and Hall-effect measurements in comparison with those of Fe₃O₄. Although there have been a number of works on magnetic properties of stoichiometric $CuFe_2O_4$ [11, 12], solid solution $Cu_xFe_{3-x}O_4$ system has not been examined to the same extent. The sol-gel method is known to be efficient for synthesizing transition-metal oxide films in uniformity of

[©]The Korean Magnetics Society. All rights reserved. *Corresponding author: Tel: +82-32-835-8271 Fax: +82-32-835-0778, e-mail: pjy@inu.ac.kr

grains, deposition rate, and compositional variation. With flat surface, the film specimens are also efficient for investigating electrical properties of the $Cu_xFe_{3-x}O_4$ system. The role of Cu for the magnetic and electrical properties of the Fe-based ferrite was discussed on the basis of the observed experimental data.

2. Experimental

The Cu_xFe_{3-x}O₄ specimens were prepared as thin films by using a sol-gel method that is able to provide precursors homogeneous to molecular level. The precursor solution was prepared by dissolving Fe(NO₃)₃·9H₂O and Cu(CH₃CO₂)₂·H₂O powders together in 2-methoxyethanol at room temperature. The substrate, α -Al₂O₃(0001), was spin-coated by the precursor solution at 3000 rpm for 20 s and then heated at 300 °C for 4 min. The same process was repeated for increasing the film thickness. All film specimens were obtained through post-annealing in evacuated (~10⁻³ Torr) quartz tube at 800 °C for 4 h.

The crystal structure of as-prepared specimens was characterized by XRD with Cu K_{α} radiation (0.15406 nm) in the grazing-incidence manner with fixed X-ray incidence angle of 4°. The surface chemical states about Cu of Cu_xFe_{3-x}O₄ films were investigated by XPS with Al K_{α} radiation (1486.6 eV). The magnetic hysteresis curves of the Cu_xFe_{3-x}O₄ films were measured by using VSM at room temperature with magnetic field H (\leq 10 kOe) applied parallel to square-shaped film plane.

3. Results and Discussion

In Fig. 1, the XRD plots of the $Cu_xFe_{3-x}O_4$ (x \leq 1.0) films prepared by the sol-gel process are exhibited. The observed XRD peaks indicate spinel-phased polycrystalline $Cu_xFe_{3-x}O_4$ and exhibit little shift of the 2θ from

Fig. 1. X-ray diffraction plots of polycrystalline $Cu_xFe_{3-x}O_4$ films.

 Table 1. Lattice parameters of polycrystalline Cu_xFe_{3-x}O₄ films.

Cu composition (x)	Lattice parameter (nm)
0.0	0.8371
0.2	0.8354
0.4	0.8345
0.6	0.8351
0.8	0.8356
1.0	0.8339

those of the magnetite specimen. It implies little change in the lattice parameter of Fe₃O₄ by Cu doping that is attributable to poor physical contrast of XRD between Cu and Fe. The lattice parameter of each specimen was calculated by extrapolating the values obtained from individual XRD peak positions and the corresponding Miller indices by using the Nelson-Riley function. As listed in Table 1, the lattice parameters of the Cu_xFe_{3-x}O₄ specimens are between 0.8371 nm (x = 0.0) and 0.8339 nm (x = 1.0), close to those in literature, 0.8385 nm (JCPDS) 88-0866) and 0.8349 nm (JCPDS 25-0283), respectively. The XRD patterns also disclose neither a phase decomposition observed in Co_xFe_{3-x}O₄ [13] nor a tetragonal distortion observed in Ni_xFe_{3-x}O₄ [14]. However, the XRD data disclosed two small peaks: one near 33.2° for x = 0.2 and the other near 50.5° for x = 0.8 and 1.0 as denoted by α and β in Fig. 1. The peak α is identified as the (104) diffraction of rhombohedral Fe₂O₃ (JCPDS 87-1166), while the peak β is identified as the (200) diffraction of fcc Cu (JCPDS 85-1326).

The Cu 2*p*-electron binding-energy (BE) spectra of the Cu_xFe_{3-x}O₄ specimens obtained by the XPS measurements are exhibited in Fig. 2. The Cu 2*p* spectra consist of spinorbit-split $2p_{3/2}$ and $2p_{1/2}$ peaks and satellites which are known to be sensitive to the charge valence of Cu ions in spinel Cu_xFe_{3-x}O₄. Both Cu $2p_{3/2}$ and $2p_{1/2}$ peaks consist

Fig. 2. (Color online) X-ray photoelectron spectra of Cu 2p electrons in Cu_xFe_{3-x}O₄ films.

of two lines and gain strength gradually with increasing Cu composition. The lines α_1 and α_2 , corresponding to Cu $2p_{3/2}$ (932.5 eV) and $2p_{1/2}$ (952.4 eV), respectively, as indicated in Fig. 2, are ascribed to Cu²⁺(B) ions [11]. On the other hand, the lines β_1 and β_2 , corresponding to Cu $2p_{3/2}$ (934.7 eV) and $2p_{1/2}$ (954.6 eV), respectively, are ascribed to Cu²⁺(A) ions [11]. The broad satellite peak near 945 eV has been ascribed to Cu²⁺ ions in copper oxides [15].

The binding energy of a Cu 2*p* electron under a crystal field of eight (octahedral) O^{2-} ions is expected to be smaller than that under the field of four (tetrahedral) O^{2-} ions. The ratio of line intensity [16] between α_1 and β_1 obtained by estimating their curve-fitted areas is 4:1 for the x = 1.0 specimen, implying that ~20 % of the Cu²⁺ ions are located at the tetrahedral sites.

Magnetic hysteresis measurements were performed on the ferrite films at room temperature by using VSM as shown in Fig. 3. The thickness of the magnetic films estimated by using scanning electron microscopy was in the 0.7~0.8 μ m range. The Cu_xFe_{3-x}O₄ films show magnetization well saturated at the external magnetic field of 10 kOe. The saturation magnetization (M_s) of the Cu_xFe_{3-x}O₄ specimen shows a gradual decrease with increasing x from that of pristine Fe₃O₄ specimen, 415 emu/cm^3 (= 83 % of the theoretical value of 500 emu/cm^3 corresponding to net spin magnetic moment of 4 $\mu_{\rm B}$ per formula unit). For the x = 1.0 (CuFe₂O₄) specimen, M_s is observed to be 212 emu/cm³, being 51 % of the observed value for the Fe_3O_4 specimen. The observed M_s of the CuFe₂O₄ specimen is about 77 % of a theoretical value of 275 emu/cm³ (= 2.2 $\mu_{\rm B}$ per formula unit), estimated for a mixed spinel $(Cu^{2+}_{0.15}Fe^{3+}_{0.85})_{tet}[Cu^{2+}_{0.85}Fe^{3+}_{1.15}]_{oct}O_4$ [11]. The ratio between the observed and the theoretical M_s for

Fig. 3. (Color online) Magnetic hysteresis curves of $Cu_xFe_{3-x}O_4$ films measured by vibrating sample magnetometry at room temperature with external magnetic field parallel to the film plane.

the $CuFe_2O_4$ specimen is seen to be close to the corresponding value for the Fe_3O_4 specimen.

In Fig. 4, the variation of M_s with x is displayed as open circles. Also, a dashed straight line is drawn between 415 (at x = 0) and 100 emu/cm³ (at x = 1.0). In case that all $Cu^{2+}(d^9)$ ions occupy the octahedral sites, the net spin magnetic moment for x = 1.0 (CuFe₂O₄) would be 1 μ_B per formula unit when the ferrimagnetic order prevails. So, the expected value of M_s for CuFe₂O₄ with octahedral Cu^{2+} is ~25 % (~100 emu/cm³) of that of Fe₃O₄. It is seen that the value of M_s deviates significantly from the straight line for x > 0.4. The deviation can be understood in terms of the appearance of tetrahedral Cu²⁺ ions for the Cu composition above x = 0.4. The net magnetic moment from the tetrahedral sites is expected to be reduced due to smaller magnetic moment of the Cu^{2+} (1 μ_B) ion than that of Fe^{3+} (5 μ_B) ion. Such reduction in the tetrahedral magnetic moment led to an increase in the net magnetic moment of the spinel $Cu_xFe_{3-x}O_4$ under the ferrimagnetic order.

The DC electrical resistivities of the ferrite specimens were measured using a van der Pauw method under an external magnetic field of 10 kOe at room temperature. As shown in Fig. 5, the electrical resistivity (ρ) of the Cu_xFe_{3-x}O₄ film increases with increasing Cu composition from 5.5 × 10⁻² Ω ·cm for x = 0 (Fe₃O₄) to 1.7 Ω ·cm for x = 1.0 (increase by a factor of 30). The good electrical conductivity of Fe₃O₄ can be understood based on thermally activated electron hopping between octahedral Fe²⁺(d^6) and Fe³⁺(d^5) sites [9]. The minimum distance between the octahedral cations is ~0.3 nm, estimated from the lattice parameter of Fe₃O₄ (0.8385 nm). The electron hopping in the cationic sublattice has been theoretically formulated in terms of transport of small polaron, composed of an electron and surrounding acoustic phonons [17, 18]. Such

Fig. 4. Saturation magnetization at H = 10 kOe of $Cu_xFe_{3-x}O_4$ films obtained from the respective magnetic hysteresis curves.

Fig. 5. Electrical resistivities of $Cu_xFe_{3-x}O_4$ films. Electrical resistivities of $Ni_xFe_{3-x}O_4$ films are exhibited for comparison with those of $Cu_xFe_{3-x}O_4$.

polaronic conductivity is likely to be sensitive to the cation distribution in the crystal lattice. Thus, the increase in ρ with increasing x for Cu_xFe_{3-x}O₄ is ascribed primarily to the decrease in octahedral Fe²⁺ population caused by the Cu²⁺ substitution, resulting in a decrease in octahedral Fe²⁺-Fe³⁺ polaronic hopping rate.

The variation of ρ for Cu_xFe_{3-x}O₄ is compared with that of Ni_xFe_{3-x}O₄ in Fig. 5. The Ni_xFe_{3-x}O₄ films for the Hall measurements were prepared following the sol-gel process described in ref. 19. It is seen that the value of ρ for Ni_xFe_{3-x}O₄ increases with x faster than that for Cu_xFe_{3-x}O₄: at x = 1.0, ρ = 16 Ω ·cm for Ni_xFe_{3-x}O₄, being larger by a factor of ~10 than that for Cu_xFe_{3-x}O₄. The ionic valence of Ni in the Ni_xFe_{3-x}O₄ specimens was found to be +2 [19], same as that of Cu in the present Cu_xFe_{3-x}O₄ specimens. Thus, the difference in ρ between the two compounds is primarily attributable to significant tetrahedral Cu²⁺ density in Cu_xFe_{3-x}O₄, while the Ni²⁺ ions in Ni_xFe_{3-x}O₄ exist mostly in the octahedral sites [19, 20].

4. Conclusions

The spinel Cu_xFe_{3-x}O₄ (x \leq 1.0) thin films have been successfully deposited on α -Al₂O₃(0001) substrates by using a sol-gel process. X-ray diffraction data indicated that Fe and Cu mix properly to solid-solution Cu_xFe_{3-x}O₄ without lattice deformation. The Cu ions in the Cu_xFe_{3-x}O₄ specimens exist as Cu²⁺ at tetrahedral as well as octahedral sites. The magnetic hysteresis curves of Cu_xFe_{3-x}O₄ are well saturated under the external field of 10 kOe and exhibit decreasing M_s with increasing Cu composition. The decreasing trend of M_s can be understood in terms of the majority and minority of Cu²⁺ ions at octahedral and tetrahedral sites, respectively. The increase in electrical resistivity of Cu_xFe_{3-x}O₄ with increasing x is understood

Magnetic and Electrical Properties of Spinel Copper Ferrite Thin Films - Kwang Joo Kim et al.

as due to a decrease in polaronic hopping rate of electron between octahedral Fe^{2+} and Fe^{3+} ions.

Acknowledgments

This work was supported by Incheon National University Research Grant in 2016.

References

- J. A. Paulsen, A. P. Ring, C. C. H. Lo, J. E. Snyder, and D. C. Jiles, J. Appl. Phys. 97, 044502 (2005).
- [2] C. W. Nan, M. I. Bichurin, D. Shuxiang, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).
- [3] X. Gu, W. Zhu, C. Zia, R. Zhao, and W. Schmidt, Chem. Commun. 47, 5337 (2011).
- [4] J. Singh, A. Roychoudhury, M. Srivastava, V. Chaudhary, R. Prasanna, D. W. Lee, S. H. Lee, and B. D. Malhotra, J. Phys. Chem. **117**, 8491 (2013).
- [5] X. Liu, T. Zhang, Y. Qu, G. Tian, H. Yue, D. Zhang, and S. Feng, Electrochim. Acta 231, 27 (2017).
- [6] Y. Zhao, X. Zhai, D. Yan, C. Ding, N. Wu, D. Su, Y. Zhao, H. Zhou, X. Zhao, J. Li, and H. Jin, Electrochim. Acta 243, 18 (2017).
- [7] D. Tripathy, A. O. Adeyeye, C. B. Boothroyd, and S. N. Piramanayagam, J. Appl. Phys. 101, 013904 (2007).
- [8] S. B. Ogale, K. Ghosh, R. P. Sharma, R. L. Greene, R. Ramesh, and T. Venkatesan, Phys. Rev. B 57, 7823 (1998).
- [9] C.-H. Lai, P.-H. Huang, Y.-J. Wang, and R. T. Huang, J. Appl. Phys. 95, 7222 (2004).
- [10] R. Gupta, A. K. Sood, P. Metcalf, and J. M. Honig, Phys. Rev. B 65, 104430 (2002).
- [11] C. Reitz, C. Suchomski, J. Haetge, T. Leichtweiss, Z. Jaglicic, I. Djerdj, and T. Brezesinski, Chem. Commun. 48, 4471 (2012).
- [12] D. Gingasu, I. Mindru, L. Patron, and C.-B. Cizmas, J. Alloys Compd. 460, 627 (2008).
- [13] K. J. Kim, J. H. Lee, and C. S. Kim, J. Korean Phys. Soc. 61, 1274 (2012).
- [14] K. J. Kim, M. H. Kim, and C. S. Kim, J. Magn. 19, 111 (2014).
- [15] J. Kwon, J. M. Ducere, P. Alphonse, M. Bahrami, M. Petrantoni, J.-F. Veyan, C. Tenailleau, A. Esteve, C. Rossi, and Y. J. Chabal, Appl. Mater. Interfaces 5, 605 (2013).
- [16] K. J. Kim and T. Y. Koh, J. Sol-Gel Sci. Technol. 77, 528 (2016).
- [17] R. Schmidt, A. Basu, and A. W. Brinkman, Phys. Rev. B 72, 115101 (2005).
- [18] A. Karmakar, S. Majumdar, and S. Giri, Phys. Rev. B 79, 094406 (2009).
- [19] K. J. Kim, T. Y. Koh, J. Park, and J. Y. Park, J. Magn. 22, 360 (2017).
- [20] A. Ahlawat, V. G. Sathe, V. R. Reddy, and A. Gupta, J. Magn. Magn. Mater. 323, 2049 (2011).