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Background: Recently, an utmost attention has been devoted by researchers on the prestaltic movement of vis-

cous flows due to its novel importance in daily life problems, human body and many physical systems. In era of

biological systemns and health sciences, the prestaltic mechanism attribute impotant applications blood circula-

tion in vessels, blood pumping in heart, food in esophagus etc. Moreover, the applications of novel Galerkin

finite element scheme for solution of nonlinear partial differential equations associated with peristaltic flow

problems is another challenging task for mathematicians. Owing to such motivativations in mind, this compu-

tational presents the magnetohydrodynamic peristaltic flow of viscous fluid at high Reynolds number induced

by an asymmetric wall channel. The novel impact of magnetic force are also utilized as a novelty. Method: The

equations which exploit the flow problem are numerically tackled with help of Galerkin finite element scheme.

Results: The results are computed and show great validation for physical parameters like wave constants,

amplitude ratio and Reynolds number. The validation of obtained results are worked out with already claimed

data and achieved an excellent accuracy. The mechanisms of transport process is addressed in view of involved

physical parameters namely wave constant, Reynolds number and Hartmann number. The graphical observa-

tions are successfully revealed for all parameters. 
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1. Introduction

The phenomenon of peristalsis utilizes much dynamic

significance in the era of various industries and physio-

logical systems. The applications of peristaltic process in

physiological system include flow of bold in arteries,

urine movement from kidney to bladder, movement of

blood in vessels, nutriment swallowing in esophagus etc.

Moreover, flow encountered by roller pumps and pharm-

acological delivery arrangement also conveys applications

of peristaltic transport. The indispensable theoretical

analysis on the peristaltic pattern was organized by

Latham [1]. Yung and Yih [2] followed the work based on

the peristaltic analysis encountered by a fixed frame of

reference without applications of lubrication theory.

Shaprio et al. [3] deduct the mathematical relations for

peristaltic movement of fluid based on the novel as-

sumptions of low Reynolds number. The analysis reveals

that upon consideration of long wavelength approach, the

inertial features cannot play a justified role. This investi-

gation provides a direction for researchers to conduct

research on this topic with analytical approach, numerical

simulations under various physical situations [4-11]. 

The investigations conducted above report the peri-

staltic pattern induced by tube or symmetric channels.

The lubrication approach was pursued for presenting the

mathematical relations for these useful investigations. The

work performed by Mishra and Rao [18] directed the

peristaltic movement of Newtonian material configured

by an asymmetric channel in view of diverse amplitude

ratio and phase shift. The dynamic mechanism of long

wavelength postulation and inertia impact has been

ignored for suggesting the mathematical model. An

important claim reported in this analysis argues that flux
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rate and trapping zone are more progressive in symmetric

channel in contrast to the asymmetric boundary channel.

The importance of curvature features in viscous material

followed the peristaltic mechanism has been worked out

by Rao and Mishra [19]. Elshehawey et al. [20] modeled

the peristaltic motion model confined a porous walls

channel for viscous material flow in view of dominant

wavelength hypothesis. Moreover, the inertial forces

cannot play contributory role in this peristaltic approach.

The solution structure was provided by using Adomian

decomposition technique. The heat transportation in peri-

staltic study of viscous fluid induced by vertical channel

having porous walls was led by Srinivas and Gayathri

[21]. Ali and Hayat [22] deals with modeling of non-

Newtonian fluid in peristaltic movement confined by

asymmetric walls channel with variation of amplitude

ratio. They concluded that increase in amplitude ratio of

upper and lower wall increases pressure in pumping

section. However, declining observations were searched

out in co-pumping area. Later on varius approaches were

made regarding analytical assumption of peristaltic move-

ment in asymmetric channel owing to high wavelength

consideration and small Reynolds number assumptions.

The numerical solution of peristaltic motion against inertial

effecton asymmetric channel is yet tooinvestigated. Only

few studies can be seen in literatures recent past years for

symmetric channel against Newtonian and Non-Newtonian

fluid. Javed et al. [29] presented the numerical solution of

MHD peristaltic motion at high Reynolds number of

viscous fluids in an inclined channel. They used finite

element method to solve the governing equation in sym-

metric channel for arbitrary values of amplitude ratio and

wave number. They concluded that the size of trapping

bolus increases by increasing Reynoldsand Hartmann

numbers. They also described that the velocity is less

sensitive in the range . Hamid et al. [30]

studied the peristaltic motion of Non-Newtonian fluid in a

symmetric channel. They also used finite element method

toobtain the numerical solution and concluded that the

pressure rise increases due to by increase in Reynolds and

wave numbers. Asha and Deepa [31] evaluated the

peristaltic mechanism of magnetized micropolar nano-

material subject to the thermal radiation and entropy

generation applications. The peristaltic analysis for the

Rabinowitsch fluid model impacting chemical reactions

and thermal radiation confined by flexible channel has

been conducted by Imran et al. [32]. Vaidya et al. [33]

modeled and analyzed a peristaltic flow problem form

Jeffrey nanofluid confined by a porous tapered channel

with wall transport features. Rashid et al. [34] investi-

gated the peristaltic transport of Williamson fluid con-

figured by a curved channel with external impact of

magnetic force. Imran et al. [35] presented an investi-

gation based on peristaltic motion in Jeffrey six constant

in presence of nanofluid along a vertical non-uniform

tube. Some other important research regarding fluid flow

is listed in Refs. [36-45].

The aim of the present study is to investigate the

numerical analysis of MHD peristaltic motion in asym-

metric channel without using any assumption which will

be valid for arbitrary Reynolds number.The current study

extends the previous analysis carried out by Mishra and

Rao [18], for the specified valueso of wave constant and

Reynolds number. The invertigation performed by Mishra

and Rao [18] declared analytical solution of asymmetric

peristaltic flow under the assumption of low Reynolds

number and long wavelength. The current study discussed

the Reynolds number and wave number effects at different

phase difference without using any assumption. This study

also compared with the analytical solution of Mishra and

Rao [18] as a limiting case for validation of the present

results and found an excellent agreement.

2. Problem Formulation

Let us develope the mathematical model for peristaltic

motion of viscous fluid subject to the magnetic force

effects. The flow is confined by an infinite 2-D channel

with width 2h0 as sketched in Fig. 1. The magnetic force

impact is assumed along normal direction of flow. The

imposed magnetic force has uniform strength of magnetic

field represented with B0. The origin of flow is based on

movement of wave train having velocity c in the channel

direction which is denoted by following relations: 

,   (Upper wall)

(1)0 Re 20 
H1 X, t  = h0 d 1

*
– cos

2 X ct– 


--------------------------
 
 
 

Fig. 1. (Color online) Geometry of two-dimensional peristal-

ticasymmetric channel.
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, (lower wall)

(2)

with physical quantities  (wavelength), ,  (wave

amplitudes) and  (phase difference in peristaltic waves).

The value of  is taken from [0, ]. It is remarked that

results for symmetric channel in absence of phase wave

are achieved when  = 0. The imposed relations in fixed

frame are structured as:

, (3)

,

(4)

, (5)

Above relations are imposed in fixed frame where U

reflects the velocity components along the direction of X

while the velocity components specified along Y is

symbolized with V.

, (6)

. (7)

The boundary conditions on U = 0 at Y = H1 and Y = H2

arises no-slip at the upper and lower wall respectively.

The condition  at Y = H1 and  at Y = H2

shows that the normal velocity of fluid at the upper and

lower walls is equal to the normal wall velocity respec-

tively. The transformation relating the laboratoryframe to

waveframe isdefine as 

, (8)

where  are  and  components of velocity in

moving frame, respectively.Introducing the following

dimensionless variables

,

,

. (9)

The dimensionless form of governing equation and

boundary conditions in moving frame can be written as 

, (10)

,

(11)

, (12)

 at , (13)

 at , (14)

where 

 and

, (15)

where  is the Reynolds number which

represents the ratio of inertial forces to the viscous forces,

 is the wave number,  is the

Hartmann number represents the ratio of the electro-

magnetic force to the viscous force and 

 and  represents

dimensionless form of upper and lower walls respectively,

where d1 is the amplitude ratio of upper wall and d2 is the

amplitude ratio of lower wall. Upon introducing the

stream function and vorticity  defined by

, , , (16)

in Eqs. (11) and (12), after eliminating pressure terms,we

get 

, (17)

. (18)

The corresponding boundary conditions on wall in term

of  are [18]
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where
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3. Finite Element Analysis

The peristaltic pattern of viscous material has been

mathematically modeled in set of Eqs. (17) and (18)

along with the boundary assumptions defined in Eqs. (19-

20). These expressions are of partial in nature for which

computation of solution is main task in this section. On

this end, finite element technique, a famous numerical

approach is followed to achieve the numerical simu-

lations. The mesh point for this solution technique is

suggested with appliance of built-in pdetool function with

help of MATLAB computational software. In many

reported research on this topic, the modeling of such

peristaltic problems are tackled low Reynolds number and

long wavelength assumptions. The novel objective of this

attempt is to involve the influence of such prime

quantities to perform the analysis. The highly convincing

numerical iterations are achieved by following the quadratic

triangle elements. The approximated stream function and

vorticity are suggested via following relations:

, , (22)

with element nodal approximations k which associated

with  and k with . Moreover, Nk represents the

element node shape function. With help of following

Galerkin’s formulation are imposed:

, (23)

, (24)

where w1 and w2 are weight functions and  is domain of

the problem. After simplification, the Eqs. (23) and (24)

can be written as:

,

(25)

= , (26)

where  is boundary of the domain. After introducing Eq.

(22) into Eqs. (25) and (26) and considering the discretized

domain, we have:
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,

(28)

with  (mass matrix), ,  (convective matrix),

 (force vector) with following definition:

, (29)
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, (31)

, (32)

, (33)

The system of equations (27) and (28) combined as a

global system in matrix form defined as 

. (34)

where

, ,

 . (35)

The global matrix system formulated in Eq. (34) is

numerically treated with Newton-Raphson technique upto

excellent iterative accuract.

4. Pressure Evaluation

The contribution of pressure per unit length cannot be

denied in peristaltic pattern flow problems. The change in

pressure arise per unit length has been measured with

applications of numerical integration of pressure gradient.

The movement of peristaltic transport is referred to the

infinite sinusoidal wave, therefore, the pressure is com-

puted only at y = 0. The change in pressure gradient is

imposed from Navier-Stokes relations as:

, (36)
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, (37)

The change in P is 

. (38)

5. Result and Discussion

The boundary value problem (17) and (18) has been

solved using finite element method by developing code in

MATLAB. Figure 2 shows the validation of the present

result with the existing result of Mishra and Rio [18] at

low Reynolds and wave numbers assumption. It is

observed that the present results are highly accurate and
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Fig. 3. (Color online) Velocity profiles for different Reynolds number (a) M = 1, Q = 1.2, = , = 0.2, d1 = d2 = 0.5, (b) M = 1,

Q = 1.2, = , = 0.2, d1 = 0.6, d2 = 0.3.

Fig. 2. (Color online) Comparison of velocity profile of pres-

ent computational result with analytical solution of Mishra and

Rio [18] at Re = 0, = 0 and d1 = d2 = 0.5.

Fig. 4. (Color online) Velocity profiles for different Hartmann number (a) Re = 1, Q = 1.6, = , = 0.2, d1 = d2 = 0.5, (b) Re =

1, Q = 1.6, = , = 0.2, d1 = 0.6, d2 = 0.3.
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well matched with the result of Mishra and Rio [18]. It

validates that the formulation and simulation presented is

also valid for high Reynolds and wave numbers. The

velocity profiles against different values of Re, M, Q and

 are plotted in Figs. 3-5. All the results are plotted at

phase difference  = , amplitude ratio d1 = d2 = 0.5 and

d1 = 0.6, d2 = 0.3. Figure 3 shows the velocity profile for

different values of Reynolds number at fixed values of M

= 1 and Q = 1.6. It is noted that with increasing Reynolds

number, velocity profile decreases near the upper wall

and increasing near the lower wall. It is also noticed that,

the velocity increases at center of the channel due to

increase in Reynolds number up to 10 at amplitude ratio

d1 = 0.6 for upper wall and d2 = 0.3 for lower wall. It

concludes that at different amplitude ratio, velocity

decreases with increasing Reynolds number. The velocity

profiles at different value of Hartmann number (M ) is

shown in Fig. 4 with fixed Q = 1.6 and Re = 1. A rapid

increment in velocity associated with the center part of

channel is evaluated with dominant variation of Hartmann

number and decreases near both the upper and lower

walls of the channel. Moreover, the velocity reduces

when amplitude ratio of upper and lower walls are

different. Figure 5 shows the velocity profile for different

value mean flow rate. The observations claimed that by

increasing time mean flow rate Q, the velocity increases

throughout the region. Moreover, the velocity increases at

center part of the channel if the amplitude ratio of upper

and lower walls are same. The velocity profile against

differentwave number  is plotted in Fig. 6. It is noted

that with increasing wave number, the velocity decreases

at lower part of the wave. These effects are observed

Fig. 5. (Color online) Velocity profiles for different time mean flow rate (a) Re = 1, M = 1, = , = 0.2, d1 = d2 = 0.5, (b) Re =

1, M = 1, = , = 0.2, d1 = 0.6, d2 = 0.5.

Fig. 6. (Color online) Velocity profiles for different wave number (a) Re = 1, Q = 1.6, = , M = 1, d1 = d2 = 0.5, (b) Re = 1, Q =

1.6, = , M = 1, d1 = 0.6, d2 = 0.3.
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reversed at upper section of the wave, that is, velocity

increases near the upper wall by increasing wave number.

It concludes that fluid velocity is faster in upper section of

the channel as compared to that of lower channel. It is

also observed that velocity enhanced whenamplitude ratio

of upper and lower walls are maintained same and reduced

Fig. 7. (Color online) Streamline against different phase shift for M = 1 (left) and M = 3 (right) with fixed parameter Q = 1.6, Re =

1, d1 = d2 = 0.5.
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when amplitude ratio is different against all parameters. It

accomplishes that amplitude ratio plays an important role

in reduction/enhancement of fluid velocity.

The streamline structure in wave frame is similar to the

walls because the walls are assumed to be stationary.

However, in diverse situations the shape of streamline

Fig. 8. (Color online) Streamline against different phase shift for Re = 1 (left) and Re = 1 (right) with fixed parameter Q = 1.6, M =

1, d1 = d2 = 0.5.
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split to enclose bolus of fluidparticles in closedstreamlines

which is called trapping phenomenon. Figures 7 to 9

shows the trapping behavior for different value of M, Re

and Q at phase differences = 0 (symmetric flow), = /

4,  = 5/6 and  = . Figure 7 shows the trapping

phenomena for Hartmann number M = 1 and M = 3 with

Fig. 9. (Color online) Streamline against different phase shift for Q = 1 (left) and Q = 1.6 (right) with fixed parameter Re = 1, M =

1 and d1 = d2 = 0.5.
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same amplitude d1 = d2 = 0.5 for both upper and lower

walls. It is observed that for small value of Hartmann

number, the size of boluses decreases near the upper wall

against any phase difference. The size of bolus decreases

near the lower wall when phase difference 5/6 and

increases when   5/6. It is also observed that the

trapping bolus near the lower wall move along the wall,

but when Hartmann number M = 3, the size of bolus

increases near the upper wall at phase difference /4

and then decreases when phase difference  > /4. More-

over, the size of bolus increases at large Hartmann

number as compare to small Hartmann number for

different phase shift in the upper surface of channel wall.

The conclusion point out from such results reveal that

phase difference  may useful to depress the fluid

velocity at small Hartmann number. Also, large Hartmann

number helps to increase velocity at the center part of the

channel. Figure 8 shows the trapping phenomena for Re =

1 and Re = 10. It is observed that the size of trapping

bolus reduces near the upper wall against small inertial

forces, but when inertial force increases, the size of

trapping bolus first increases and then decreases by

increasing phase difference . It is also seen that, there is

no significant effects are observed in symmetric channel

against large value of Reynolds number. An interesting

point is noted that the more bolus appear in the upper

section of the channel as compare to that of the lower

section when phase difference is = /4 and = 5/6 for

large Reynolds number. It means that the velocity of the

fluid is higher near the upper wall while velocity reduces

near the lower wall. When  =  and Re = 10, the

trapping boluses get reduces and moving along the walls.

Figure 9 shows the streamlines against time mean flow

rate at Q = 1 and Q = 1.6. It is noted that for small value

of Q, the streamlines look same as the lower and upper

wall while when Q increase, the trapping boluses are

formed. It is observed that the size of trapping boluses

decreases near the upper wall at different phase differ-

ence. It is also noted that the trapping bolus initially

decreases near the lower wall when phase difference is 

/6 and then increases when phase difference become

 > 5/6.

Pressure rise P per wavelength is the important

characteristic in peristaltic pumping which gives the idea

of flow rate in the flow field. Figures 10 to 15 show the

variation of pressure rise per wave length against time

mean flow for different value of Reynolds number (Re),

Hartmann number (M), wave number (), phase difference

() and different amplitude ratios respectively.In these

Figures, it is seen that the free pumping P = 0 appear in

the range of  against all the parameters. In

Figure 10, it is observed that the pressure is linear for

small inertial force but when inertial forces increase the

0 Q 1.5 

Fig. 10. (Color online) Pressure rise per wave length for Reyn-

olds number (Re).

Fig. 11. (Color online) Pressure rise per wave length for Hart-

mann number (M).

Fig. 12. (Color online) Pressure rise per wave length for wave

number ().
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pressure rise per wave length is not linear. Also by

increasing inertial forces the pressure enhance in the

region of positive pumping while declining trend is

credited in co-pumping area. The change in pressure

against fluctuated values of Hartmann number against

small inertial force and phase difference  = 5/6 are

shown Fig. 11. The profile of P is sufficiently pro-

gressive in pumping portion while is reduce in co-

pumping region. A contrasted change in P is noticed

for wav constant which is due to fact that, in wave

number, the pressure decreases in positive pumping

region and increases co-pumping region as illustrated in

Fig. 12. Figure 13 shows the pressure rise per wave

length against difference phase shift. It is observed that

pressure is maximum in the case of symmetric channel (

= 0) and decreases by increasing phase difference in

positive pumping region. Pressure rise per wave length

for different amplitude ratio for upper and lower walls are

observed in Figs. 14 and 15 respectively. It is observed

that pressure is linear and maximum on the same

amplitude ratio of upper and lower wall. Further, pressure

rise increases in positive pumping region when amplitude

ratio of upper wall increases and depress in co-pumping

surface. The another observations claimed here attribute

that P is maximum when amplitude ratio subject ot

lower channel wall get increase. 

6. Conclusions

Computation study is carried out for two-dimensional

peristaltic flow in the asymmetric channel without

neglecting the inertial force and long wavelength assump-

tions. The finite elementtechnique is used to solve the

governing higher order nonlinear equation. The graphical

reflection of stream function, pressure distribution and

longitudinal velocity against time are successfully pre-

sented. The results for these profiles are computed at

lower surface and upper region of channel. The analysis

reported without applications of small Reynolds number

approach and consideration of long wavelength is com-

paratively different. The observations claimed from current

continuation are summarized as:

• The longitudinal velocity increases at the center part

of the channel by increasing the amplitude ratio of the

upper and lower wall.

• The change in Hartmann number show a decrement

in velocity near the channel wall while the trend at

center is different.

• Th inertial forces are dominant over the viscous

forces near the lower wall.

• The variation in wave constant improve the inertial

impact which result a decrement in velocity at lower

Fig. 13. (Color online) Pressure rise per wave length for phase

difference ().

Fig. 14. (Color online) Pressure rise per wave length for dif-

ferent amplitude ratio of upper wall.

Fig. 15. (Color online) Pressure rise per wave length for dif-

ferent amplitude ratio of lower wall.
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channel surface. The size of trapped bolus increases

for large Reynolds number, Hartmann number and

phase difference and hence the velocity is maximum

at high Reynolds number.

• The size of trapped bolus decreases when the phase

difference is shifted to against Reynolds number,

Hartmann number and time mean flow rate.

• The pressure rise is linear against small Reynolds

number. 

• The pressure enhances in pumping area with increas-

ing Reynolds and Hartmann numbers. However, it

decreases with increasing wave number and phase

difference. Moreover, pressure rise per wavelength-

achieves is maximum at same amplitude ratio of

upper and lower walls.
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