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This paper comprises the exact solutions of Non-Newtonian multiphase fluid through peristaltic pumping char-

acteristics in an annulus having complaint walls and applied magnetic field. The mechanics of the geometry are

defined cylindrical due to its large number of utilizations in medicine and biological apparatus. The external

cylinder is having sinusoidal waves travelling along its walls. The problem is simplified by some suitable and

valid approximations. The authors have obtained the accurate solutions of the velocities of two phases. The

effects of appertaining parameters have been displayed through graphs of velocity for v and particulate phases

and the behavior of curves are manipulated accordingly. It is concluded that applied magnetic field decreases

the velocity of both the fluid and the particles flow.
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1. Introduction

The phenomenon of peristalsis occurs naturally in human

organs by means of incessant periodic muscular oscillations

of the ducts through pumping physiological fluid. The

examples include: flow of urine from kidney to bladder,

bile pace in a duct, motion of food bolus in the alimentary

canal, chime movement in the gastrointestinal tract, move-

ment of eggs in the female Fallopian tube, transportation

of lymph in the lymphatic vessels, vasomotion in small

blood vessels and also many glandular ducts. A variety of

theoretical and experimental studies has been introduced

on peristaltic transport on many fluid models through

various types of geometries.

Many researchers put their efforts to analyze the signi-

ficant features of Newtonian and non-Newtonian fluids

[1-5]. Mostly, fluids are used in industries which exhibit

non-linear behavior. So a large of number of researchers

and scientists have presented the problems of peristaltic

transport of non-Newtonian fluid [6-12].

The studies mentioned earlier do not realize the effect

of walls flexibility. The experimental studies [13, 14]

emphasize the consideration of walls characteristics of the

channel in peristaltic studies. To reflex the importance of

wall flexibility of the channel/tube in the natural pro-

cesses that exist in the industry and physiology, the per-

istaltic flow through the geometry with compliant walls

has attained immense interest for the researchers [15]. A

lot of literature is available for the study of peristaltic

flows in channels, ducts and tubes having compliant

walls. Abed Elnaby and Haroun [16] have presented a

new model to study the influence of wall properties on

peristaltic motion of a viscous fluid. Actually the study of

compliant wall is very useful for controlling the Muscle

tension. The action of these muscles has been discussed

mathematically by a set of equations which relate to

compliant wall displacement [17, 18]. Srinivasvas and

Kothandapani [19] have achieved the consequences of

heat and mass transfer analysis on MHD peristaltic flow

across a porous space and considered the wall properties.

The flow having more than one phase of a given fluid

occurs is considered as a multiphase flow. Examples of

multiphase fluids include gas-liquid transport in evapo-

rators and condensers, gas-liquid-solid flows in chemical

reactors, solid-gas flows in pneumatic conveying, etc. It is

useful to look at the variegated and ubiquitous challenges

of multiphase flow. In fact multiphase flows must occur

in processing technology. It is prominently seen in cavi-

tating pumps and turbines to electro photographic pro-

cesses to papermaking to the pellet form of almost all raw
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plastics. Multiphase flows are also a prepared aspect of

our environment, whether one considers rain, fog, snow,

sediment transport, mudslides, debris flows, and many

more natural phenomena. Very delicate medical and bio-

logical flows are mostly motives, from the blood pumping

to semen to the bends to lithotripsy to laser surgery

cavitation and so on. There are few studies which deal

with the peristaltic multiphase flows [20, 21].

However, the inclusion of MHD and wall properties of

the peristaltic multiphase flow of non-Newtonian fluid

has not been yet explored. Keeping in mind the highly

significant role of compliant walls in peristaltic flows, the

authors have a keen interest in presenting the non-New-

tonian multiphase fluid in the presence of applied magnetic

field in an annulus with complaint walls. The equations

governing the problem are reduced to the simple format

under the assumptions of the least Reynolds number and

large wavelength. The exact solution for obtaining equations

under certain boundary conditions has been obtained. The

effects of all pertinent parameters are also taken into

account graphically.

2. Development of the Problem

In this section, flow through infinite coaxial cylinders is

taken into account. The inner gap between both tubes is

loaded through irrational, incompressible and non-New-

tonian fluid having minor spherical particles. The inward

tube is considered as rigid though the external tube is

taken as elastic and a sinusoidal wave moving with a

steady speed on it. The cylindrical coordinate system (r,

z) is chosen such that the radial direction is represented

by  and  is considered along the center point of

external and internal tube as sketched in Fig. 1:

The schematic view of the divider surface is along these

lines portrayed as

(1) 

where

(2)

In above defined equations, the radius of inward tube is

represented by, at any axial distance  the radius of the

external tube from channel is represented by , which

is fixed as , where k (<< 1) is a constant para-

meter whose magnitudes depend upon the length of the

annulus and the exit channel dimension, wave amplitude

is represented by, λ is showing the wave length, the speed

of the wave spread is represented by c and the time is

represented by . The governing equation motion for

fluid phase and particulate phase are stated as follows:

Fluid phase

Continuity Equation:

, (3)

Momentum Equations:

r-component

 (4)

z-component

 S (5)

Particulate phase

Continuity Equation:

(6)

Momentum Equations:

r-component

  (7)

z-component

 (8)

The stress of Jaffrey fluid [15] is expressed as
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Fig. 1. Diagram of the geometry.
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(9)

(10)

 (11)

Here, R0 representing the radius of every particle, D' is

the drag coefficient, C stands for volume fraction density,

S represents the stress tensor, μs is the viscosity of sus-

pension, the temperature is signified by , the viscosity

of fluid is μ0, the ratio between relaxation and retardation

time is symbolised by λ1, delay time is symbolised as λ2,

shear rate is denoted by  and dot express the derivative

w.r.t. time. Presently, it advantageous to characterize

dimensionless quantities as

 (12)

where wave number is defined by δ, M is the Hartmann

number, N1 represents the drag coefficient parameter and

φ(< 1) is the amplitude ratio. To continue further, consider

the assumption of long wave length and creeping flow.

Using Eq. (12) in Eq. (3) to Eq. (9), we get:

(13)

(14)

(15)

for complaint walls [15]

(16)

where

 (17)

From Eq. (13) it is obvious that p is independent of r,

hence the relevant BC’s are expressed as:

(18)

In an above relation, Ei (i = 1, 2, 3, 4, 5) are defined, as

 is wall tension,  is a mass characteri-

zation parameter,  is damping nature, 

is wall rigidity and  is wall elastic, are the di-

mensionless elasticity factors. Here, the mass per unit

area is represented by m, the flexural rigidity of the plate

is characterized by B, the elastic tension per unit width in

the membrane is signified by T, D is the coefficient gives

the viscous damping forces and K is the spring stiffness.

Solution of the problem:

Using Eq. (15) and Eq. (18) in Eq. (14), the exact

solution with can be written as

(19)

Now using the Eq. (19) in Eq. (15), then we get the

exact value of up as follows:

(20)

The volume flow rate of fluid and dust phase is

expressed as

(21)

where 
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After using Eq. (21) to Eq. (23), the simplified form,

volume flow rate is able to express as

 (24)

3. Numerical Results and Discussion

In this session, the solutions are discussed graphically.

The graphs for the fluid velocity profile and particle

velocity profile are sketched in two dimensions. Velocity

profile is plotted for non-Newtonian as a particular case

of our study. In order to bring out the addition of dis-

similar upper given parameters, computational software

Mathematica has been used to visualize the performance

of all the parameters through graphs.

3.1. Fluid velocity profile

Figures 2-10 represent the behavior of velocity pro-

files of fluid beside the different parameters. It can be

observed from Fig. 2 that the velocity and volume

fraction (C) varies directly. On the other hand, from Fig.

3, it can be noticed that as Hartmann number (M) gets

larger, the velocity profile decreases. From Figs. 4-5, it

can be easily observed that by increasing weightage of the

Jeffery factor parameter λ1 and the amplitude ratio φ,

respectively, the velocity field increases and gets absolute

maximum value in the Central part of the domain value.

Fig. 6 shows that by increasing the values of E1, the

velocity decreases. Figs. 7-10 are plotted to see the effects

of different physical parameters namely E2, E3, E4 and E5

on velocity vector. It can be measured that by increasing

the effects of these parameters, the velocity profile

increases.
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Fig. 2. (Color online) Variation in velocity profile of Uf with r

for different values of particle volume fraction C for fixed E1

= 0.5, E2 = 0.6, φ = 0.5, μ = 1.2, M = 0.1, λ1 = 37, E3 = 0.6,

E4 = 0.7, E5 = 0.9.

Fig. 3. (Color online) Variation in velocity profile of Uf with r

for different values of magnetic field factor M for fixed E1 =

0.5, φ = 0.1, μ = 0.1, C = 0.1, λ1 = 37, E2 = 0.6, E3 = 0.6, E4 =

0.7, E5 = 0.9.

Fig. 4. (Color online) Variation in velocity profile of Uf with r

for different values of Jeffery fluid parameter λ1 for fixed E1 =

0.5, φ = 0.5, μ = 1.2, M = 0.1, C = 0.1, E2 = 0.6, E3 = 0.6, E4 =

0.7, E5 = 0.9.

Fig. 5. (Color online) Variation in velocity profile of Uf  with r

for different values of amplitude ratio φ for fixed μ = 1.2, M =

0.1, C = 0.1, λ1 = 37, E2 = 0.6, E3 = 0.6, E4 = 0.7, E5 = 0.9.
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3.2. Particle velocity profile

Figures 11-19 represent the behavior of velocity profiles

of particle against the different parameters. It can be

disclosed from Fig. 11 that the velocity field increases by

increasing the quantity of volume fraction (C). Fig. 12

tells us some different story; it can be noticed that if

Hartmann number (M) makes the velocity of particles

come down. It means that presence of magnetic field

results in resisting the speed of the particles. From Figs.

13-14, it can be easily observed that by increasing the

Fig. 6. (Color online) Variation in velocity profile of Uf with r

for different values of E1 for fixed E1 = 0.7, φ = 0.5, μ = 1.2,

M = 0.1, C = 0.1, λ1 = 3, E2 = 0.6, E3 = 0.6, E4 = 0.7, E5 =

0.9.

Fig. 7. (Color online) Variation in velocity profile of Uf with r

for different values of E2 for fixed φ = 0.5, μ = 1.2, M = 0.1,

C = 0.1, λ1 = 37, E1 = 0.5, E3 = 0.6, E4 = 0.7, E5 = 0.9.

Fig. 8. (Color online) Variation in velocity profile of Uf with r

for different values of E3 for fixed φ = 0.5, μ = 1.2, M = 0.1, C

= 0.1, λ1 = 37, E1 = 0.5, E2 = 0.6, E4 = 0.7, E5 = 0.9.

Fig. 9. (Color online) Variation in velocity profile of Uf with r

for different values of E4 for fixed φ = 0.5, μ = 1.2, M = 0.1,

C = 0.1, λ1 = 37, E1 = 0.5, E2 = 0.6, E3 = 0.6, E5 = 0.9.

Fig. 10. (Color online) Variation in velocity profile of Uf with

r for different values of E5 for fixed φ = 0.5, μ = 1.2, M = 0.1,

C = 0.1, λ1 = 37, E1 = 0.5, E2 = 0.6, E3 = 0.6, E5 = 0.7.

Fig. 11. (Color online) Variation in velocity profile of Up with

r for different values of particle volume fraction C for fixed φ

= 0.5, μ = 1.2, M = 0.1, C = 0.1, λ1 = 37, E1 = 0.5, E2 = 0.6,

E3 = 0.6, E4 = 0.7, E5 = 0.9.
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Jeffery parameter λ1 and the amplitude ratio φ, respec-

tively, the particle velocity field increases. It reflects the

point that when by increasing the relaxation time, the

particles move faster. Fig. 15 shows that by increasing the

values of, the velocity decreases, which was not in the

case for fluid. Figs. 16-19 are plotted to see the effects of

different physical parameters namely E2, E2, E3, E4 and E5

on velocity vector. It is visible here that by increasing the

values of these parameters the velocity profile increases.

Fig. 12. (Color online) Variation in velocity profile of Up with

r for different values (M) for fixed φ = 0.1, μ = 0.1, C = 0.1, λ1

= 37, E1 = 0.5, E2 = 0.6, E3 = 0.6, E4 = 0.7, E5 = 0.9.

Fig. 13. (Color online) Variation in velocity profile of Up with

r for different values of Jeffery fluid parameter λ1 for fixed φ

= 0.5, μ = 1.2, M = 0.1, C = 0.1, E1 = 0.5, E2 = 0.6, E3 = 0.6,

E4 = 0.7, E5 = 0.9.

Fig. 14. (Color online) Variation in velocity profile of Up with

r for different values of amplitude ratio φ for fixed μ = 1.2, M

= 0.1, C = 0.1, λ1 = 37, E1 = 0.5, E2 = 0.6, E3 = 0.6, E4 = 0.7,

E5 = 0.9.

Fig. 15. (Color online) Variation in velocity profile of Up with

r for different values of E1 for fixed φ = 0.5, μ = 1.2, M = 0.1,

C = 0.1, λ1 = 37, E2 = 0.6, E3 = 0.6, E4 = 0.7, E5 = 0.9.

Fig. 16. (Color online) Variation in velocity profile of Up with

r for different values of E2 for fixed φ = 0.5, μ = 1.2, M = 0.1,

C = 0.1, λ1 = 37, E1 = 0.5, E3 = 0.6, E4 = 0.7, E5 = 0.9.

Fig. 17. (Color online) Variation in velocity profile of Up with

r for different values of E3 for fixed φ = 0.5, μ = 1.2, M = 0.1,

C = 0.1, λ1 = 37, E1 = 0.5, E2 = 0.6, E4 = 0.7, E5 = 0.9.
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4. Concluding Remarks

This article discusses non-Newtonian multiphase fluid

with external MHD in an annulus with complaint walls.

The flow is induced by a sinusoidal wave of the external

cylinder. The flow is described by law of conservation of

mass and momentum. The fluid is assumed to be in-

compressible. The solution is obtained numerically. The

effects of mast parameters are scotched. The major out-

comes of our current examination are summarized below:

• From the above mathematical analysis, we have

derived that both the fluid and particle velocity profiles

diminishes due to the influence of Hartman number

while their behavior is opposite for the Jeffery Fluid

parameter.

• The fluid and the particle velocities increase with the

particle volume fraction and the amplitude ratio, while

their behavior is opposite for elasticity parameter.

• For all the remaining elasticity parameters, the fluid

and particle velocity profiles vary directly.

• The present analysis can approaches to Newtonian

fluid by using λ1 = 0, as evidence of novelty and

accuracy of the present study.

Nomenclature

: Cylindrical coordinates

b1 : Radius of inner tube

: Wave amplitude

c : Wave speed

λ : Wavelength

t : Time

R0 : Radius of particle

D
t : Drag Force

C : Volume fraction density

S : Stress tensor

μs : Viscosity of suspension

T : Temperature

μ0 : Viscosity of fluid

λ1 : Ratio between relaxation and retardation time

λ2 : Delay time

 : Shear rate 

δ : Wave number

M : Hartmann number

N1 : Drag coefficient parameter

φ : Amplitude ratio

E1 : Wall tension

E2 : Mass characterization parameter

E3 : Damping nature

E4 : Wall rigidity

E5 : Wall elastic

M : Mass per unit area

B : Flexural rigidity of the plate

T : Elastic tension per unit width

D : Coefficient of viscous damping forces

K : Spring stiffness.
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