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In this study, the mathematical expression of temperature dependence upper critical magnetic field (Hc2), angle

dependence of upper critical magnetic field (Hc2), and temperature dependence of Ginzburg-Landau (GL)

characteristics were investigated. The parameters were computed by using two band Ginzburg-Landau (GL)

phenomenological model for Ba(Fe1-xNix)2As2 iron based superconductor. Application of very small external

magnetic field at low temperature to nickel doped BaFe2As2 changes to Ba(Fe1-xNix)2As2 iron based supercon-

ductor at a critical temperature of 19.5 K. The phase diagrams of the two upper-critical field and GL charac-

teristics length were plotted as a function of angle and temperature for Ba(Fe1-xNix)2As2 iron based

superconductor using the experimental values. The phase diagram shows the linear dependence of upper criti-

cal magnetic field parallel  and perpendicular ( ) with temperature (T). Correspondingly, the phase dia-

grams of the upper critical field (Hc2()) versus the angle () were plotted. The parallel and perpendicular to

the symmetry axis of coherence length (ξGL(T)) and penetration depth (λGL(T)) versus temperature were plot-

ted. In these plots both parameters are increased with increasing temperature and diverges at the critical tem-

perature for the superconductor Ba(Fe1-xNix)2As2. This theoretical investigation was found to be in agreement

with the obtained experimental results. 

Keywords : two band Ba(Fe1-xNix)2As2, upper critical magnetic field (Hc2(T)), GL coherence length (ξGL(T)), GL pen-

etration depth (λGL(T))

1. Introduction

The great discovery of superconductivity in iron-based

superconductor was LaFeAsO1-xFx with the critical

temperature 26 K in 2008 [1], Which has attracted

increasing attention by the scientific community. The

optimized critical temperature of the electron doped of

LaO1-xFxFeAs recorded by maximizing the external

pressure which is 43 K and determined by high pressure

of electrical resistance measurements [2]. For high

temperature iron based two band superconductors, the last

high critical temperature upraised to 57 K particularly

double doped for Sm0.95La0.05O0.85F0.15FeAs [3]. The most

superconductors of 122 parent compounds are more

interested with the investigation of physical properties

because of single crystals growth, electronic and magnetic

properties. Among ion based superconductor, 122 systems

are the most popular and promising material for an

application owing to the upper critical magnetic field and

low anisotropy, specifically in hole doped (Ba0.6K0.4)Fe2As2

with 38 K critical temperature have made excessive

straggle [4].

The other 122 iron based system have provided a great

interest which are recently systematic measurements of

thermal conductivity and magnetic properties which have

shown that Ba(Fe1-xNix)2As2 in the strongly over-doped

regime exhibits unconventional superconductivity [5, 6].

Recently, two band model of nickel substitution for iron

BaFe2As2 at 20 K transition temperature induce super-

conductivity by changing its magnetic order. This iron

based superconductor specifically is appropriate for deal-

ing with the wide-ranging process of the electronic

properties. This electronic structure or properties performed

by dopants to the system and changes its structure due to

ionic difference. 

Electron pairing is mediated by an electron-phonon

interaction for conventional superconductors, and can be

well understood within the microscopic-model developed

Hc2
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by Bardeen-Copper-Schrieffer (BCS) superconductivity

theory, developed in 1957 [7]. To explain the super-

conductivity in iron-based superconductor, electron-phonon

coupling mechanism is not sufficient. This leads to

another pairing mechanism which is spin fluctuation or

magnetic interaction. 

The superconducting performance is estimated from the

critical temperature, critical current density, upper critical

magnetic field and anisotropy. Even though iron-based

superconductor has high upper-critical magnetic field but

from its family, 111 compounds have small upper critical

magnetic field compared to the other system or family [8-

10]. The crucial advancement of upper-critical magnetic

field for iron-based superconductor is next to the future of

type-II superconductivity [11]. To investigate the upper-

critical magnetic field for unconventional iron-based

superconductors having enough concepts about its pairing

formation for this special system is more significant even

for further study.

With the application of external magnetic field in both

planes, then the respected upper-critical magnetic field

drops to zero and this is conscience of vanishing super-

conductivity. The most influential theory for dealing with

the magnetic phase diagram of iron-based superconductor

is Ginzburg-Landau theory [12]. The multiband iron-

based superconductors of free energy density functional

theory is described as the power series order parameters

with district of transition temperature and using GL

equations by minimization of free energy density function,

these can designate the field delivery in superconductors.

In another way, the iron-based superconductor is quite

promising for applications because its high upper critical

magnetic field, and critical current density makes this

system attractive for electrical power and magnetic

application. So this formulation is the most fundamental

technique that leads the experimentalists to check its

feasibility using mathematical model. 

2. Formulation of the Model

2.1. The of Upper-critical Magnetic Field

The phenomenological Ginzburg-Landau (GL) free

energy density functional for two coupled superconducting

order parameters 1 and 2 can be expressed as [14],

(1)

where

(2)

(3)

(4)

The terms H1 and H2 are conventional contributions

from 1 and 2 and the term H12 describes the inter-band

coupling of order parameters without the loss of generality’.

 is the deposited energy in the local magnetic. The

effective mass for each bands is denoted as m1 and m2 the

coefficients  and 1 describe the coupling of two order

parameters (proximity effect) and their gradients (drag

effect) respectively. i is the temperature-dependent

parameter and i is temperature independent parameter

[14].  is expected external magnetic field as a

function of vector potential. So, by inserting eqs. (2-4)

into eq. (1), we obtained, 

(5)

In order to obtain Ginzburg-Landau equation for two

band model superconductors, we have minimized eq. (5)

with respect to variations in the complex conjugate of the

order parameters as follow, 

 (6)

At , the cubic order parameter approach to zero,

therefore using this idea and eq. (6), the minimized GL

free energy density function is written respectively as

follow,

  (7)
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  (8)
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Using matrix product form and balanced for Eqs. (7)

and (8), it can be described as follows, 

(9)

In order to linearize the GL equations better associate

time independent Schrödinger equation to eq. (9) under a

magnetic field of harmonic oscillation having free moving

particle of mass m1 and m2 and charge e* becomes,

 and

Therefore having the above relation eq. (9) will be 

 (10)

In order to calculate the upper critical magnetic field,

first it is very important to consider the energy eigen-

values of the quantum harmonic oscillator. Since the

lowest part of the quantum field can be approximated as a

harmonic oscillation, therefore the lowest energy level has

an energy  and  in these level any

one calculates the upper-critical magnetic field at the

ground state. At this level the oscillator frequency is

 with the vector potential of A = Hc2x in one

dimensional x direction. Therefore eq. (10) can be written as,

 (11)

By having determinant and m1 = m2 = m for eq. (11),

the upper-critical magnetic field can be obtained as

(12)

Eq. (12) can be written as,

 (13)

So, the solution for this quadratic equation will be,

(14)

For simplification we used , ,

 to make scaling, where 1, 2, and 12 are the

effective corresponding coherence lengths for each bands,

 and  are excitation energy with the

mixing gradient inter-band and quantum flux respectively,

therefore by inserting those variables lastly we got,

 (15)

In order to solve this equation considering some cases

is very important 

The first case is that for: -

, for this part the

square root is complex. Therefore since the magnetic field

is real, this solution is invalid.

The second case is that for: -

, for this part the

solution is valid and by employing Taylor binomial series

expansions, the upper-critical magnetic field for eq. (15)

has negative and positive value respectively as follow,

 (16)
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(17)

The two band superconductor of GL theory is reduced

to effective single band superconductor due to the case of

drag effect, and in this case 2 =  = 1 = 0. Therefore eq.

(17) only the reduced theory to effective single band

model and the upper-critical magnetic field have a solution

with a physical meaning as follows,

 (18)

By inserting the coherence length on the upper-critical

magnetic field with the effect of anisotropy mass tensor

for eq. (18) will be,

 (19)

In isotropic bulk two-band superconductor, the gradient

part of two order parameters have great significance,

therefore the GL characteristics length and the upper-

critical magnetic field of the two-band superconductor

have physical insight.

Therefore expressing the effective coherence length as

follows.

 (20)

So, eq. (19) will be,

 (21)

Using the upper-critical magnetic field of eq. (21), we

can determine the angle dependence of upper-critical

magnetic field for isotropic effective masses at angle 

which is between c-axis and applied magnetic field at low

temperature, 

 (22)

Using eq. (21) the Ba(Fe1-xNix)2As2 at 0 K, 1.75 anisotropy

parameter [15], ab(0) = 2.3 nm  and c(0) = 2.01 nm

coherence length [16] and using 0 = 2.0678 × 1015 Tm2

will be,

 (23)

This indicated the upper-critical magnetic field near to

the critical temperature is dependent of angle  [17].

Therefore using eq. (21) the applied magnetic field

parallel to the direction of c-axis, the temperature depen-

dence upper-critical magnetic field becomes, 

 (24)

In the ab-plane the GL coherence length ab(T) =

, at 0 K. 

So, the final temperature dependence upper-critical

magnetic field of eq. (24) will be,

 (25)

Using the same procedure for eq. (21) the temperature

dependence of upper critical magnetic field with applied

magnetic field perpendicular to the c-axis can be expressed

as,

(26)

So, having ,  and 0

= 2.0678 × 1015 Tm2 for eq. (26) becomes,
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to be considered. This characteristic length can be defined

as,

 (28)

The coherence length can indicate the standard width of

the transition layer of the order parameter  neighborhood

of the boundary between a normal region and a super-

conducting region.

(T) at the temperature less than the critical temperature

can be described as . Therefore the

GL characteristics length with zero temperature  is

expressed as, 

 (29)

Therefore, by taking  and  into con-

sideration the final expression for each coherence length

becomes respectively. 

(30)

 (31)

The other very important phenomenological properties

of a superconductor using GL model is the GL penet-

ration depth (GL) which penetrates a superconductor and

surface current flows with a very thin thickness. this can

be described as a function of superconducting electron

density as follow,

 

 (32)

When the superconducting electron density approaches

to the total electron density at 0 K,

 (33)

Using the two-fluid model or theory [18], the above

equation will be, 

 (34)

Performing eq. (34) and (33) in eq. (32), we obtain,

 (35)

Therefore, by having the experimental values of 

and , we have

 (36)

 (37)

Using the experimental values for Ba(Fe1-xNix)2As2, the

GL characteristic parameter  becomes,

 and

 (38)

 (39)

The GL characteristic parameter , shows the exact

break point between type-I and type-II superconductors,

which ,  and  apply for, type-I and

type-II respectively. This idea was approved or experi-

mented by Abrikosov [19]. Based on this the considerable

system of this study for eq. (38), and we conclude that the

iron based superconductor Ba(Fe1-xNix)2As2 is an example

of type-II superconductors.

3. Results and Discussion

In this paper the angle and temperature dependence

upper-critical magnetic field for field parallel and perpen-

dicular to the symmetry axis, the GL characteristics lengths
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Fig. 1. (Color online) Dependency of upper critical magnetic

field Hc2() with the angle  in Ba(Fe1-xNix)2As2.
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for parallel and perpendicular to the symmetry axis have

been investigated using GL two band phenomenological

model in Ba(Fe1-xNix)2As2 iron-based superconductor.

The angle dependence of upper-critical magnetic field

in eq. (23) is the primarily mathematical expression, and

its phase diagram has been shown in Fig. 1. From this

figure the upper critical magnetic field increases from

zero to ninety degree without linearly for Ba(Fe1-xNix)2As2

iron based system.

Next to this, the experimental values in eq. (25) and

(27), the phase diagram of  and  with temperature

have been shown in Fig. 2. From this phase diagram both

temperature dependent upper-critical magnetic fields

decrease for increasing temperature in this considerable

iron-based system. Similarly, using the experimental values

for eqs. (30) and (31), the phase diagram of both GL

coherence length with temperature have been shown in

Fig. 3. So, this plot tells us both temperature dependence

coherence lengths increase to the temperature and diverge

to infinity at the critical temperature in this super-

conducting iron-based compound. Finally, by considering

the experimental values in eqs. (36) and (37), the phase

diagram of  and  with temperature have been

plotted in Fig. 4. In this phase diagram both GL

penetration depth increased to the temperature and are

diverged to infinity at the critical temperature in the

superconductor Ba(Fe1-xNix)2As2.

4. Conclusion

In order to determine the phenomenological charac-

teristics properties for two band iron-based superconductor,

we used two-band Ginzburg-Landau (GL) model. Using

this model the upper critical magnetic field, GL coherence

length and GL penetration depth have been determined

for Ba(Fe1-xNix)2As2 iron based superconductor and we

have plotted the phase diagrams with temperature for

each parameters. From these the GL coherence length and

penetration depth are forcefully temperature dependent:

this is the consequences of anisotropy nature and temper-

ature dependence of upper-critical magnetic field in

Ba(Fe1-xNix)2As2 two band model of iron based super-

conductor. This shows that the critical field along ab-

plane ( ) is quite different from critical field along c-

axis ( ). As we have seen in Fig. 2 the two upper-

critical magnetic fields decay to the temperature. The

upper-critical magnetic field with angle theta is also

shown in Fig. 1. Finally, the GL coherence length and

Hc2

||c
Hc2

 c

GL

ab
GL

c

Hc2

 c

Hc2

||c

Fig. 2. (Color online) Temperature dependence of the upper

critical magnetic field parallel and perpendicular to the sym-

metry axis in Ba(Fe1-xNix)2As2.

Fig. 3. (Color online) Ginzburg-Landau coherence length

GL(T) versus temperature in Ba(Fe1-xNix)2As2.

Fig. 4. (Color online) Ginzburg-Landau penetration depth

GL(T) versus temperature in Ba(Fe1-xNix)2As2.
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Ginzburg-Landau (GL) penetration depth with temperature

have been plotted in Fig. 3 and Fig. 4, these indicate that

both characteristic lengths diverge to infinity at the

transition temperature. This theoretical investigation is

consistent with the obtained experimental results [20].
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