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The present study aims to develop a deep learning (DL) model to quantify metabolites. To apply DL to metab-

olite quantification using 1H-MRS data, Convolutional autoencoder (CAE) were designed to extract line‐nar-

rowed, baseline‐removed, and noise-free metabolite spectra for each metabolite. Fifty thousand simulation data

were generated by varying the SNR (4-12), linewidth (6-22 Hz), phase shift (± 5°), and frequency shift (± 5 Hz)

on phantom spectra. The data were divided into 45,000 simulation data for training and 5,000 test data, and the

mean absolute percent errors (MAPEs) were used to evaluate the performance of the CAE. The average MAPE

of the metabolites was 13.64 ± 11.38 %. Fourteen metabolites were within the reported concentration ranges.

These findings showed that the proposed method had similar or improved performance than conventional

methods. The proposed method using DL was the recent and up-to-date quantification one and has clinically

potential applicability.
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1. Introduction

Proton magnetic resonance spectroscopy (1H-MRS) as a

nondestructive and noninvasive tool based on magnetic

field provides the biochemical information extracted from

a desired region of an organism [1]. 1H-MRS in the field

of magnetic resonance imaging (MRI) is a value-added

modality in preclinical and clinical studies of disease

states [2]. While other MRI studies only offer the

structural details, that is, morphological findings such as

cysts, tumors, swelling, etc., 1H-MRS provides functional

information on the metabolic status of the brain by

quantifying the metabolites and determining their types

from a spectrum, which is a 1H-MRS data [3, 4]. There-

fore, it is important to quantify the metabolites precisely.

However, despite tremendous efforts and numerous

publications on this topic [5-7], accurate quantification of

metabolites is still difficult due to the strongly overlapp-

ing metabolite peaks, relatively low signal-to-noise ratio

(SNR), and a broad background originating primarily

from macromolecules and lipids. Since metabolic changes

in the brain related to research on various diseases,

including psychiatric disorders, are analyzed based on the

concentration of metabolites, a precise quantitative method

is needed to obtain reliable results [8]. 

Deep learning (DL), a technique that attempts to model

high-level abstractions in data with multiple processing

layers, has achieved popularity in recent years with the

availability of powerful GPUs [9, 10]. It consists of a

model with several hidden layers of artificial neurons

using the underlying structure of the input data [11].

Starting with the extraction of lower-level features from

the initial layers and proceeding to the subsequent layers,

higher-level features are extracted based on the features

of the previous layers [12]. This feature extraction using

multiple layers allows the network to model complex

variations of input data as the weighted sum of all features

in each layer and make accurate predictions [13]. In

addition, DL has been successfully used in MRI and MRS
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for classification, object recognition, noise removal, and

prediction. Kyathanahally et al. reported the application

of CNNs for the detection and removal of spectroscopic

artifacts [14]. Chandler et al. quantified the concentration

of γ‐aminobutyric acid using DL [15]. Hatami et al. built a

CNN that was trained on a time‐domain dataset and was

capable of quantifying individual metabolites in a simu-

lated spectrum [16]. Lee et al. trained a CNN to predict

the entire metabolite spectrum of the human brain and

then quantified the metabolites using a simple inverse

problem [17]. The CAE is a DL model specialized for

noise reduction that extracts noise-free, line-narrowed,

baseline-removed, phase- and frequency-corrected meta-

bolite spectra from the spectrum of the mouse brain.

In the present study, a convolutional autoencoder

(CAE) model for each of the metabolites was proposed

for accurate precise quantification of metabolites by

reflecting their individual characteristics. Twenty-one

metabolite spectrum extraction algorithms were developed

by training DL models for each metabolite. 

2. Materials and Methods

2.1. MRS Data Acquisition

The metabolite phantom spectra and in vivo spectra of

mice were acquired with a 9.4 T Bruker MRI/MRS

system. For simulation data, phantom spectra were acquired

using point resolved spectroscopy (PRESS) as the follow-

ing parameter: repetition time (TR) = 10,000 ms, echo

time (TE) = 10 ms, number of signal averages = 128,

bandwidth = 5 kHz, number of data points = 4,096) for

twenty-one metabolites that were used as the experimental

basis set. Fig. 1 shows the following spectra for meta-

bolites: alanine (Ala), ascorbic acid (Asc), aspartate (Asp),

choline (Cho), creatine (Cr), γ‐aminobutyric acid (GABA),

glucose (Glc), glutamine (Gln), glutamate (Glu), glycine

(Glyc), glutathione (GSH), lactate (Lac), myo‐Inositol (m-

Ins), scyllo-Inositol (s-Ins), glycerophosphorylcholine

(GPC), taurine (Tau), N‐acetylaspartate (NAA), N‐acetyl-

aspartylglutamate (NAAG), phosphocreatine (PCr),

phosphorylcholine (PCh), phosphorylethanolamine (PE).

Twelve C57BL/6N mice were used for the in vivo MRS

data (male, six-week-old, 18-25 g). The data were acquired

from the brain of the mice using PRESS (TR = 4,000 ms,

TE = 10 ms, number of signal averages = 512, bandwidth

= 5 kHz, number of data points = 4,096). A voxel (1.8 ×

3.4 × 1.8 mm3) was placed on the left hippocampus.

2.2. MRS simulation data

To simulate the spectrum of the mouse brain, simulation

data were generated as follows. This study basically

referenced Lee's simulation method [17]: 1) Each simu-

lation data set consists of a linear combination of twenty-

one metabolite spectra. The ranges for the concentrations

of each metabolite were confirmed by referring to previous

studies [1, 18-21], 2) Line broadening was applied to the

spectrum at 6-22 Hz and zero-order phase distortion was

applied in the range of ± 5°, 3) Frequency shift was

applied to the spectrum in the range of ± 5 Hz and the

spectra of metabolites were merged into a spectrum, 4)

The simulated spectrum was combined with a macro-

molecular baseline spectrum that was extracted from the

metabolite-nulled spectra of the mice using jMRUI, 5)

The SNR of total NAA (tNAA) was adjusted by adding

random noise in the range of 4-12. Finally, 50,000

simulated spectra of the mouse brain were obtained and

randomly assigned to the training data (n = 45,000) and

the test data (n = 5,000) to minimize overfitting with the

training data,.

2.3. CAE architecture

The CAE was designed and optimized using Keras

(v.2.2.4; TensorFlow backend) on graphics processing

units (GPU; GeForce GTX 980 Ti). The CAE is a type of

convolutional neural network. The convolution operator

allows filtering of the input signals from among nearby

regions to extract some parts of its content. An auto-

encoder is an algorithm that extracts a noise-free signal

from an input signal. The CAE consists of an input layer,

convolution blocks, max-pooling layer, upsampling layer,

flattening layer, dropout layer, and dense layer, as shown

in Fig. 2. The data input to the network has 4,096 data

points, which is the size of each simulation data. The

Conv1D layer creates a convolution kernel that is con-

Fig. 1. (Color online) Neurochemical profiles of 21 metabo-
lites in the experimental basis set made of phantom-based 1H-
MRS data acquired with a 9.4 T Bruker MRI/MRS system.
Each phantom represents the metabolites.
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volved with the layer input over a single spatial (or

temporal) dimension to produce a tensor of outputs. The

convolutional filter sizes are 1 × 16, 1 × 32, 1 × 64, 1 ×

128, 1 × 64, 1 × 32, and 1 × 16, respectively. The kernel

size is 15-20 with experimental low mean squared error

(MSE) for the model of each metabolite. The Max-

Pooling1D layer downsamples the input representation by

taking the maximum value over the window defined by

pool size. UpSampling1D layer repeats each pool size

along the axis. The output data are noise-free, line-

narrowed, baseline-removed, and phase and frequency

corrected metabolite spectra of size 1 × 4,096 that are to

be predicted. The minimum loss function was attained in

the shortest time when using four pairs of convolutions

and maxpooling in the encoder part and four pairs of

upsampling and convolution in the decoder part. The pool

size was set to 2 and the stride was set to either 1 or 2

through trial and error. A rectified linear unit (ReLU)

activation function was used in the activation layer of

Conv1D. An ADAM weight update was used to train the

CAE. The CAE were trained with early stopping

technique (monitor = "val custom metric", patience = 30,

batch size = 256). The loss function was the MSE. In

addition, the Keras custom metric was designed. This is

the difference between the relative amplitude of the

ground truth and the predicted metabolite spectrum. The

relative amplitude indicates the scale factor relative to the

basis set spectrum. Model learning was conducted in a

manner such that the metric value was minimized. The

package is designed for Python 3.6 and TensorFlow 1.12.

Fig. 2. (Color online) Architecture of a convolutional autoen-
coder (CAE) proposed in this study for metabolite quantifica-
tion. The CAE is trained to predict the spectrum of each
metabolite from in vivo 1H-MRS data in the brain.

Fig. 3. (Color online) Representative simulated spectra in the test set (A-D), ground truth metabolite spectra (E-H), corresponding
CAE‐predicted metabolite spectra (I-L), and difference spectra obtained by subtracting the CAE-predicted spectra from the ground
truth spectra (M-P).
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3. Results

Fig. 3 (A-D) shows the representative simulated spectra

in the test data along with the ground truths (Fig. 3 (E-H))

and metabolite spectra predicted by the CAE (Fig. 3 (I-

L)). Despite the different SNRs, linewidths, and macro-

molecular baselines, the CAE effectively extracts the

metabolite spectra (Fig. 3 (I-L)). The linewidth at the

range of 6-22 Hz in the simulated spectrum of the mouse

brain was narrowed to 10 Hz in the spectrum predicted by

the CAE, which corresponds to the linewidth of the

ground truth. The differences between the ground truth

and CAE‐predicted spectra showed small when referring

to the residual spectra that subtracted the CAE-predicted

spectra from the ground truth spectra (Fig. 3 (M-P)).

These differences were calculated by the mean squared

errors (%). 

The mean absolute percent error (MAPE) was calculated

using the following relation.

MAPE =  (1)

Here, ai is the actual and pi is the predicted relative

concentration for each spectrum (i = 1, …, n). 

Fig. 4 shows the MAPEs of the metabolites quantified

from the simulated spectra in the test data. For all meta-

bolites, the average MAPE of twenty-one metabolites was

13.64 ± 11.38 %. The metabolites with MAPE below 10

% (red dotted line) were Cr, Glc, Glu, GSH, Ins, NAA,

PCr, Tau, Glx (Glu + Gln), total Cho (tCho), total Cr

(tCr), and tNAA.

In the mammalian brain metabolites, the tCr reflects the

presence of Cr and PCr, which are known to play an

important role in energy metabolism. Because the

concentration of tCr is relatively constant throughout the

brain and resistant to change, one commonly used

approach to quantifying metabolites from 1H-MRS data

is the ratio to tCr as an internal standard for other

metabolites [22].

In Fig. 5, the ratio of the metabolites to tCr is compared

for in vivo data using the proposed method, LCModel,

and jMRUI [15]. The permissible range of each meta-

bolite concentration is the mean plus or minus 2 times its

standard deviation (SD) [1, 14-17]. The number of

metabolites within the concentration range of our method,

LCModel, and jMRUI are 14, 15, and 6, respectively.

Overall, the concentrations for the metabolites quantified

using the proposed method were within or close to the

expected ranges of the concentrations for the metabolites.
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Fig. 4. (Color online) Mean absolute percent error (MAPE) of each metabolite’s concentration for the simulated spectra in the test
data. The red dotted line indicates that the MAPE is 10 %.
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4. Discussions

Generally, quantifying the metabolites through the

spectra of the mouse brain obtained using 1H-MRS is

difficult for the following reasons: 1) strongly overlapped

metabolite peaks, 2) low SNR, 3) macromolecules and

lipids that overlap with the metabolite peaks, 4) non-

analytical lineshapes of peaks due to high magnetic field

strength, 5) residual water peaks [2]. Since the voxel size

for a mouse is smaller than that for a human, the mouse

Fig. 5. (Color online) The ratio of concentration for each metabolite to that of total creatine (tCr) estimated by the CAE (red cir-
cles), LCModel (black squares), and jMRUI (gray triangles) from 12 in vivo 

1H-MRS data from the mouse brain (#1-#12). The
expected range of the ratio for each metabolite are marked with the gray dotted lines.
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data is more degraded than the human one. Nonlinear

least squares fitting methods have been widely used in the

frequency domain and time domain to quantify the

metabolite from the degraded brain spectra. However, this

can be challenging even with the current state of the art

software packages. Therefore, developing a robust method

for brain metabolite quantification is an important issue in

studies using 1H-MRS. This study developed CAE for

each metabolite to reflect their characteristics using

simulated training data (n = 45,000). 

For the simulated test data (n = 5,000), the average

MAPE of the proposed method was 13.64 ± 11.38 %.

Ala, Glyc, NAAG, and s-Ins were quantified with high

MAPE for the simulated spectra of the mouse brain.

These metabolites are known to present in mammalian

brain at concentrations of < 1 mM [1, 23]. The concent-

rations of the metabolites were smaller and more difficult

to quantify due to more overlap than that of other meta-

bolites in the simulated spectra. Therefore, the high

MAPEs of these metabolites are shown at low concent-

rations. This study had lower MAPEs than the CNN

proposed by Lee [17], which were 20.67 ± 16.71 %.

Hence, developing DL models for each metabolite

produced better results than DL models trained for the

entire metabolite spectrum. 

For the in vivo spectra of mouse brain, the ratio of the

metabolites to tCr was used to compare the performance

of the proposed method with LCModel and jMRUI. The

number of metabolites within the concentration range

(mean ± 2 × SD) in our method, LCModel, and jMRUI

were 14, 15, and 6, respectively. NAA (2.010 ppm),

NAAG (2.042 ppm), Glu (3.746 ppm), and Gln (3.757

ppm) are difficult to quantify because of spectral overlaps.

However, the proposed method extracted the spectra of

the metabolites and quantified the metabolites better than

the LCModel and jMRUI. The ratios of Asc, Cho, and

NAAG to tCr were out of range for the LCModel and the

ones of Asp, Cho, GPC, GSH, and NAAG to tCr were

out of range for the jMRUI. In the proposed method, the

above metabolites were within the expected range. DL

has great potential for the quantification of brain

metabolites using 1H-MRS. The present study confirmed

that DL with 1H-MRS has potential applicability in both

human and mouse data.

There are some limitations to the simulation in this

study. Residual water signals, other spectroscopic artifacts,

and first‐order or higher phase distortions were not

included in the simulation. Therefore, follow‐up studies

should be conducted to improve the robustness of the

CAE on more realistically simulated in vivo spectra so

that the CAE can extract metabolite spectra from a more

contaminated spectrum.

5. Conclusions

Based on this finding in the present study, it can be

concluded that the state-of-the-art quantification method

using DL is like the result (e.g. similar quantified number

of metabolites) of previous studies and quantifies the

metabolites (e.g. ASC, Cho, and NAAG) that were not

well quantified with the existing method. It was also

proven to show improved performance (e.g. about 34 %)

over other study (e.g. Lee et al. [17]) quantified using

DL. This shows that DL has great potential for more

precise quantification considering the many factors that

can affect the one, and further clinical applications may

be possible. 
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