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Material defects in the Steam Generator Tubes (SGT) of sodium cooled fast breeder reactor (PFBR) can lead to

leakage of water into sodium. The water and sodium reaction will lead to major accidents. Therefore, the

examination of steam generator tubes for the early detection of defects is an important requirement for safety

and economic considerations. In this work, the Magnetic Flux Leakage (MFL) based Non Destructive Testing

(NDT) technique is used to perform the defect detection process. The rectangular notch defects on the outer

surface of steam generator tubes are modeled using COMSOL multiphysics 4.3a software. The obtained MFL

images are de-noised to improve the integrity of flaw related information. Grey Level Co-occurrence Matrix

(GLCM) features are extracted from MFL images and taken as input parameter to train the neural network. A

comparative study on characterization have been carried out using feed-forward back propagation (FFBP) and

cascade-forward back propagation (CFBP) algorithms. The results of both algorithms are evaluated with Mean

Square Error (MSE) as a prediction performance measure. The average percentage error for length, depth and

width are also computed. The result shows that the feed-forward back propagation network model performs

better in characterizing the defects. 

Keywords :  Magnetic Flux Leakage (MFL), Gray Level Co-occurence Matrix (GLCM), Neural Network (NN), cas-

cade-forward back propagation (CFBP), feed-forward back propagation (FFBP)

1. Introduction

Non Destructive Testing techniques are currently pre-

vailing among the most widespread techniques for the

rapid inspection of steam generator tube in the nuclear

power industry [1]. The steam generator tube is continu-

ously exposed to severe environmental conditions such as

high fluid flow rate, high temperatures and high pressures

[2]. Critical components such as Steam Generator Tubes

(SGT), feed water heaters, and pressure vessels have

rigorous design requirements regarding their structural

integrity. To improve the safety and reliability of an

industry, continuous monitoring of the structural integrity

of these equipments is very essential. Therefore, some

non destructive testing techniques have been developed

and applied for structural defect inspection during manu-

facture and regular maintenance. The techniques include

electromagnetic testing, ultrasonic testing, and others. These

methods are quite effective and accurate in detecting

structural flaws in steam generator tubes and steam pipes

[3]. Eddy current technique is a surface inspection method.

It has the limitation to size the flaw accurately because

the eddy current measures the impedance represented by

the conductivity change associated with the volumetric

change of flaws, where the permeability of flaw is con-

sidered unity. The evaluation of small defect is limited in

remote field eddy current technique. Wall loss detect-

ability is limited to 20 % or greater. The major advantage

of MFL inspection over other nondestructive techniques

is that it can detect corrosion and other defects not only

on the surface of the tube but also on the opposite side as

well. The steam generator tubes which is made of ferro-

magnetic material are periodically inspected for cracks,

notches and corrosion type defects using magnetic flux

leakage methods [4]. The MFL method is a fast and

reliable NDT technique that has been widely used for

decades. When the test object is uniformly magnetised

and if any defect presents in the test object due to reduc-
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tion in magnetic permeability, the magnetic flux lines leak

out of the object around the defect. The changeable fields

are captured by Hall-effect probes, placed directly above

the surface of the testing tube which generate signals can

be used to recognize the defects [5]. Like in other non

destructive testing techniques, solution of the inverse pro-

blem of predicting the size of defects from measured

magnetic flux leakage signals is of ultimate interest in the

community [6]. Certain methods detect the flux leakage

from the cracks in ferromagnetic material which is

magnetized by an electromagnet [7]. The simulated MFL

images are also used in order to characterize the defect

present in it. Automatic measurement system has already

been developed for detecting the backside defects of large

structures [8]. The depth estimation from the magnetic

flux leakage signals of complex defects on the under-

ground gas pipelines are analyzed. The average depth

error of 8.59 % and width error of 15.55 % and average

length error of 5.8 % has already been reported [9]. The

problem of defect detection and sizing has been addressed

by many researchers in the literature [10-16]. The use of

neural networks for pattern recognition of MFL signals

and classification of three types of defects in the weld

joint has already been reported in the literature. The results

shown that it is possible to classify signals of classes of

defect and non-defect using NN with 94.2 % efficiency.

Moreover, the algorithm is possible to classify the defect

pattern signals using neural networks with an average

rate of success of 71.7 % for the validation set [17].

Estimation of length and width of the metal-loss profiles

from the 1-D signal of the defects has been carried out.

Even though the result shows the match with actual size

and shape of defects, the quantitative evaluations of defects

are not addressed [18]. In most of the literature, while

characterizing the defects, the classifications of different

types of defects have been performed instead of sizing the

defects. Though few works have been documented related

to quantitative characterization of the defects, the accuracy

imposed is not up to the greatest level in evaluating the

surface defects of steam generator tube with the outer

diameter of 12.6 mm. In this paper, the magnetic flux

leakage images of the defect in steam generator tube have

been obtained by modeling the MFL inspection system

using COMSOL 4.3a software. Twenty two features includ-

ing fourteen Haralick features from the Gray Level Co-

occurrence Matrix are extracted for each image. GLCM

represents the distributions of the intensities and the

information about the relative positions of neighboring

pixels of an image [19]. The extracted twenty two hara-

lick features have been used as the input parameters for

neural network training. The actual defect size such as

length, width and depth have been given as target. A

performance comparison of FFBP and CFBP network for

characterizing the defects in MFL images have been made.

2. Proposed Method

The Characterization of outer surface rectangular defect

in a steam generator tube has been performed to measure

the length, width and depth of the defects. The defective

Magnetic Flux Leakage image has been obtained by

modeling the MFL imaging system using COMSOL 4.3a

Multiphysics modeling software. The detailed sequence

of the proposed defect characterization algorithm is shown

in Fig. 1. The radial defect present in the outer surface of

steam generator tube is considered in this work. The mag-

netizing probe and hall sensor arrangements are placed

inside the steam generator tube which is of 100 mm length,

17.4 mm outer diameter and 2.3 mm wall thickness. After

the pre-processing, feature extraction from GLCM of

MFL images and defect characterization using training

and testing of artificial neural networks have been

performed using Matlab Software. An error-back propa-

gation learning algorithm is used in this feed-forward and

Fig. 1. Flow chart for the proposed defect characterization

algorithm.
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cascade-forward neural networks in order to train the

input feature set.

2.1. Magnetic Flux Leakage (MFL) Imaging

The finite element modeling of MFL system has been

obtained through COMSOL 4.3a software. 3D view of

the modeled MFL system along with the magnetizing

arrangement are shown in Fig. 2(a). The model employs a

steel bobbin with 50 mm length, 11.3 mm Outer diameter

at the edges and 2.5 mm at the centre. A multi turn copper

coil is wound over the bobbin coil to magnetize the SG

tube. A strip of 64 Hall sensors called cutline sensor is

placed inside the tube and circumferentially arranged over

the bobbin coil. The dimension of bobbin coil arrange-

ment is shown in Fig. 2(b). Linear scanning is performed

with the above said arrangement to obtain the leakage

signal for the length of 50 mm of the tube [20]. This is

further changed into a gray scale image in defect charac-

terization process. 64 hall sensors with equal spacing are

positioned over the circumference of the bobbin coil at

the inner side of the SGT. 51 scanning movements are

given linearly and the data obtained is 64 × 51. SGT of

100 mm length is taken for this work and the data obtain-

ed is only for the length of 50 mm which is considered

for further analysis. Figure 3 shows the gray scale image

of the steam generator tube with outer surface defects.

Numerous reasons exist that can contaminate the MFL

signal congregated from a pipeline. These major reasons

include variations in the position of the sensors (lift-off)

and pipe noise due to the grain structure of pipe material

[21]. Daniel et al. performed denoising methods for MFL

images in order to choose the best wavelet family in

denoising MFL images, four wavelet de-noising techni-

ques such as Haar, db4, db8 and symlet have been perform-

ed to remove noise from the raw data. The performance

measures are evaluated [22]. Based on performance mea-

sures, Debauchies 4 wavelet de-noising technique is used

for filtering the MFL images.

2.2. GLCM feature extraction

Texture is an important feature used to identify the

region of interest in an image. In general 14 Haralic

features in the GLCM provide fundamental significant

characteristics in identifying the region in an image. But

the haralic texture feature is the first order statistical

feature and it does not contain the neighbourhood pixel

information. For defect segmentation, classification and

characterization, the neighbourhood pixel information is

very much useful in discriminating the object. The features

other than haralick in the grey level occurrence matrix

(GLCM) represent the neighbourhood pixel information

which represents second order statistical features. co-

occurrence matrix of the statistical approach provides

valuable information about the relative position of the

neighbouring pixels in an image. Hence twenty two features

are extracted from the image. So, each element (i, j) of

the matrix is the number of occurrences of the pair of

pixel with value i and a pixel with value j which are at a

distance d relative to each other [23, 24].

For a given MFL image I of size N × N, the elements of

a G × G gray-level co-occurrence matrix Mco for a dis-

placement vector d = (dx, dy) is defined mathematically

as shown in Eq. (1)

 

(1)

Following representations are used to obtain the various

GLCM features with distance d = 1 and angle at 0o. Various

literature studies show the d values ranging from 1 to 10.
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Fig. 2. (Color online) (a) 3D geometry of tube and bobbin coil

arrangement (b) dimension of the bobbin coil.

Fig. 3. MFL images of SGT with surface defects (a) length 2

mm, depth 1.15 mm, width 13.5 mm (b) length 3 mm, depth

1.38 mm, width 13.5 mm.
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By choosing higher values for d, results gets lost in neibour-

hood pixel feature which leads to poor classification. G is

the number of different gray levels in an image. μx and μy

are the means of Px and Py. σx and σy are standard

deviations of Px and Py. Px(i) is the i
th entry in the matrix

which is obtained by summing the rows of P(i, j). The

expressions for GLCM, mean and standard deviations are

depicted from the equation (2) to the equation (12).

  (2)

   (3)

  (4)

 (5)

 (6)

  (7)

   (8)

 (9)

 (10)

(11)

 (12)

The Expressions of 22 Gray Level Co-occurrence features

are given by the equation (13) to (34)

Energy/Uniformity (UNF) = (13)

Entropy (ETR) = (14)

Dissimilarity (DSL) = (15)

Contrast (CST) =  (16)

Inverse Difference (ID) = (17)

Correlation (CN) =

(18)

Homogeneity (H) =  (19)

Auto correlation (AC) =

(20)

Cluster shade (CS) =

 (21)

Cluster prominence (CP) =

 (22)

Maximum Probability (MP) = (23)

Sum of squares: variance (SS) =

 (24)

Sum average (SA) =  (25)

Sum Variance (SV) =   (26)

Sum entropy (SE) = (27)

Difference Variance (DV) =  (28)

Difference entropy (DE) = (29)

Information measure of correlation1 (IMC1) =

 (30)

Information measure of correlation 2 (IMC2) 

(31)

Maximal Correlation Coefficient (MCC) =

(32)

Inverse Difference Normalized (INN) =

(33)

Inverse different moment normalized (IDN) =

(34)

The extracted twenty two feature values from the

predicted MFL images are listed in Table 1.

2.3. Artificial Neural Network Models

The entire 250 MFL Images are considered as a dataset.

The total dataset is arbitrarily divided into two disjoint

subsets, namely, training set containing 200 data (80 % of

total dataset) and a test set comprising of 50 data (20 % of

total dataset). The data simulated with different defect
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dimensions such as length, width and depth are used in

this work. Length ranging from 1 mm to 8 mm, depth

ranging from 10 % to 60 % of total wall thickness and

width ranging from 4.5 to 13.5 mm are considered.

The neural network models of feed-forward back

propagation and cascade-forward back propagation are

trained with the dataset of defect MFL Images. Different

combinations of several internal parameters, i.e., number

of neurons, the number of hidden layers, transfer function,

etc. are tried. Levenberg-Marquardt function produces

better results, hence it was used as training function;

Mean square error is a performance function used during

training of feed-forward and cascade-forward back pro-

pagation neural network. There is no global method to

determine the optimum values for the number of hidden

layers, neurons in each hidden layer, etc. as they are

functions of expected intelligence. For developing the NN

models, neural network toolbox of Matlab R2014b software

is used.

2.3.1. Feed-forward back propagation (FFBP) Model

The literature relating to neural network based defect

characterization work is scarce. The existing literature is

mostly devoted to the classification of the defect types.

Very little work has been reported regarding sizing of

defects. Neural network can be used to predict the defect

shape and size from the MFL image [25]. The neural

network is provided with both input and proper output

(correct defect geometry) during the training phase. In the

testing phase, NN is provided with only input. i.e. GLCM

features extracted from the MFL image. Among the other

network models, back propagation NN models are very

popular though a large amount of data, and complex

relationships between the different parameters exists. The

FFBP neural network model consists of input, hidden and

output layers. Total number of input nodes are 22, number

of hidden layers are two, Number of neurons of the

hidden layers are 16 and the number of output nodes are

3. The designed FFBP NN is shown in the Fig. 4. 

2.3.2. Cascade-forward back propagation Model

Cascade forward back propagation model shown in Fig.

5 is similar to feed-forward networks. In cascade forward

back propagation networks, the first layer has weights

coming from the input. Each succeeding layer has weights

coming from the input and all previous layers. While two-

layer FFBP networks can potentially learn any input output

relationship, feed-forward networks with more layers might

learn complex relationships more quickly. Compared to

feed forward networks, a weight connection is included in

CFBP models from input to each layer and from each

layer to continual layers. The three layer network also has

connections from the input to all three layers. The addi-

tional connections improve the speed at which the network

learns the desired relationship. The performance of Cascade-

forward back propagation and feed-forward back propa-

gation is evaluated using MSE as given in eq. (35). It has

Table 1. Twenty two GLCM Features extracted from the MFL

images.

GLCM Features extracted from the defects

Defect Dimension in mm Length/Depth/Width

Feature 

Name
1/0.23/4.5 2/0.92/9 …. 8/0.46/4.5

UNF 39.31701 12.77466 …. 28.04681

ETR 1.196745 0.420188 …. 0.549688

DSL 2.241101 2.800881 …. 2.990163

CST 2.241101 2.800881 …. 2.990163

ID 80.33101 324.3388 …. 708.3407

CN 11.43705 29.67342 …. 70.25436

H 0.74557 0.305676 …. 0.483474

AC 1.088569 1.880914 …. 1.092075

CS 5.185672 3.047913 …. 5.064941

CP 2.932443 3.112431 …. 3.018299

MP 2.919795 3.108349 …. 3.014885

SS 1.666657 2.406602 …. 1.535661

SA 39.45767 12.76967 …. 28.01303

SV 22.22377 12.20957 …. 17.98757

SE 102.3765 32.68507 …. 67.75351

DV 4.571498 2.836458 …. 4.670383

DE 1.196745 0.420188 …. 0.549688

IMC(1) 1.856581 1.016194 …. 1.405677

IMC(2) -1.47162 -1.92439 …. -1.91998

MCC 2.522364 2.400993 …. 2.772492

INN 3.171635 3.217211 …. 3.196992

IDN 3.232901 3.243812 …. 3.241661

Fig. 4. Feed-forward back propagation model.
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defined to minimise the training error. The model is design-

ed with 22 numbers of input nodes, 2 hidden layers, 10

number of neurons and 3 number of output nodes.

 (35)

where, 

Qexp = Observed value

Qcal = Predicted value

n = Number of observations in a dataset

Deciding the number of hidden layers and the number

of neurons in the hidden layers is a very important part of

deciding the overall neural network architecture. The

better number will be achieved through trial and error

basis. The number of neurons in each hidden layer varied

from 1 to 17. Weights and biases are randomly initialized.

The network is trained with maximum epochs reached. In

this work, two artificial neural network models have been

developed by applying cascade-forward and feed-forward

back propagation techniques.

3. Results and Discussion

Magnetic Flux Leakage system for steam generator

tube defect detection has been modeled using COMSOL

4.3a software. In the MFL inspection, the coil orientation

is designed in such a way that the direction of magnetic

flux is orthogonal to the defect. In this present work,

MFL probe has been designed for detecting radial defect

only. The outer surface radial defect is made on the 100

mm length steam generator tube with different dimensions

such as length, depth and width. The defect features and

its dimension ranges are depicted in Table 2. Modeled

defect image that is obtained is noisy. Debauchies 4 wave-

let denoising is applied. The surface plots of simulated

noisy and filtered images are shown in Fig. 6. 

It is noted that the feature values shown in Table 1 are

varying in relation to the change in any one or combi-

nation of defect dimensions. Fourteen haralick features in

the GLCM represent the first order statistical characteri-

stics and the remaining eight parameter represent the

second order variant features with neibourhood pixel

information. It clearly depicts the low and high frequency

variation and the direction of propagation in the defect

images, which help to identity edges. Hence all the features

are taken as input to the neural network with actual defect

2

1

exp

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

N
cal

n

QQ
MSE

Fig. 5. Cascade-forward Back propagation model.

Fig. 6. (Color online) Surface Plot for (a) simulated noisy

MFL image (b) denoised MFL image.

Table 2. Actual defect features and its dimension.

Defect Dimension

Length 1 mm to 8 mm

Depth 10 % to 60 % of total wall thickness (2.3 mm)

Width 4.5 mm, 9 mm and 13.5 mm
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dimension (length, width and depth) as target. 

The results of FFBP neural network and CFBP neural

networks is evaluated in terms of charaterization accuracy

and presented in Table 5 and Table 6. As the flaw in the

pipe is non linear in nature, the tangent sigmoidal (tansig)

as threshold function and Levenberg-Marquardt as learning

algorithm are preferred for both the models.The CFBP

model with two hidden layers having ten neurons in the

layer produce the results with average percentage error of

5.77 %, 6.22 % and 3.29 % for length, depth and width

respectively. For CFBP network the error does not back

propagate to the input layer and conceives the forwarded

input to the hidden layer. In FFBP network the error pro-

pogates to the input layer and trains the network parallaly.

Hence the best results belong to FFBP model in terms of

error accuracy and global convergence as shown in Fig. 7

and Fig. 8. A FFBP model with two hidden layers having

Table 3. Results of defect characterization using Feed Forward Back propagation (FFBP) Network

l = length; d = depth; w = width in millimeter (mm).

True test data Obtained test result Error %

L D W L D W L D W

1 0.69 13.5 1.058 0.672 13.19 −5.80 2.60 2.29

1 1.38 4.5 1.034 1.296 4.599 −3.40 6.08 −2.47

2 0.46 9 1.908 0.450 9.112 4.60 2.173 −1.240

2 0.92 13.5 2.110 0.902 13.69 −5.5 1.95 1.407

3 0.23 9 3.042 0.241 9.143 −1.40 −4.78 −1.588

3 1.15 4.5 3.046 1.190 4.408 −1.533 −3.47 2.040

4 0.69 9 3.962 0.681 9.286 0.950 1.304 −5.555

4 1.38 13.5 4.108 1.352 13.21 −2.70 2.020 2.148

5 0.46 4.5 4.909 0.446 4.320 1.820 3.043 4.000

5 1.15 13.5 5.104 1.192 13.21 −2.080 −3.65 2.148

6 0.92 4.5 5.902 0.909 4.385 1.633 1.195 2.555

6 0.23 9 6.225 0.219 9.199 −3.750 4.782 −2.211

Table 4. Results of defect characterization using Cascade Forward Back propagation (CFBP) Network.

l = length; d = depth; w = width in millimeter (mm)

True test data Obtained test result Error %

L D W L D W L D W

1 0.69 13.5 1.112 0.652 13.01 −11.21 5.507 3.62

1 1.38 4.5 1.094 1.306 4.342 −9.40 5.36 3.51

2 0.46 9 2.181 0.421 9.265 −9.05 8.47 −2.94

2 0.92 13.5 2.095 0.949 13.21 −4.75 −3.15 2.14

3 0.23 9 3.162 0.211 9.287 −5.41 8.26 −3.18

3 1.15 4.5 3.089 1.221 4.372 −2.96 −6.17 2.84

4 0.69 9 3.769 0.653 9.461 5.77 5.36 −5.12

4 1.38 13.5 4.160 1.338 13.98 −4.00 3.04 −3.55

5 0.46 4.5 5.206 0.487 4.377 −4.12 −5.86 2.73

5 1.15 13.5 5.271 1.105 13.81 −5.42 3.91 −2.29

6 0.92 4.5 6.192 1.02165 4.301 −3.20 −10.97 4.42

6 0.23 9 6.243 0.250 9.291 −4.05 −8.69 −3.23

Fig. 7. (Color online) Performance plot of FFBP neural net-

work.
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sixteen neurons for each layer gives the best results with

average percentage error of 2.93 %, 3.087 % and 2.47 %

for length, depth and width respectively. 

The Actual defect volumes are calculated (length ×

depth × width). The percentage errors on volumetric defect

are computed by comparing the predicted defect dimen-

sions obtained by two neural network models with actual

defect volumes. The percentage average error is plotted in

Fig. 9. which shows the average error of length, depth

and width of the defects obtained through FFBP and

CFBP algorithms. FFBP algorithm produces smaller error

percentage when compared to CFBP algorithms in charac-

terizing the defects.

4. Conclusion

Neural network models based on feed-forward back

propagation and cascade-forward back propagation algorithms

are developed for the characterization of defects in MFL

images. Gray level co-occurance features are extracted

from defect images and given as input to the networks.

The performances of the two developed neural network

models are compared with MSE. Feed forward back

propagation model exhibits best results (average length

error of 2.93 %, average depth error of 3.087 % and aver-

age width error of 2.47 %) compared to cascade-forward

back propagation model. feed-forward back propagation

model with gray level co-occurance texture features

provides an effective means for characterizing the defects

in magnetic flux leakage images of steam generator tubes.
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