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The magnetic gradiometer onboard a maneuverable vehicle is subjected to not only magnetometer errors and

misalignment errors but also magnetic interference of vehicle. Measurement precision of the magnetic gradiom-

eter is greatly affected by those errors, so an integrated error calibration method is proposed in this paper.

Firstly, considering vector magnetometer errors and magnetic interference, an integrated error calibration

model for vector magnetometer is established, and ellipsoid fitting parameters are calculated by the least

square algorithm under ellipsoid restriction, then the error calibration matrices are solved by the Cholesky fac-

torization. Secondly, the misalignment error calibration matrices are obtained by solving the Orthogonal Pro-

crustes problem. Finally, simulations and experiments with a cross magnetic gradiometer are performed to

verify effectiveness and robustness of the proposed method. Results show that the proposed method can effec-

tively calibrate the cross magnetic gradiometer, and measurement accuracy of the cross magnetic gradiometer

is increased greatly.
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1. Introduction

Magnetic gradient tensor detection [1, 2] is an effective

detection method for the magnetic targets, such as un-

exploded ordnance, naval mines, submarines, or other

magnetic objects. Many countries have developed their

own magnetic gradiometer for magnetic targets detection,

such as the hexahedron magnetic gradiometer designed

by the Naval Surface Warfare Center, the tetrahedron

magnetic gradiometer designed by the DSO National

Laboratories, and so on.

The magnetic gradiometer is usually constructed of

multiple vector magnetometers, such as superconducting

quantum interference devices (SQUID) [3] or fluxgate

magnetometers. Fluxgate magnetometer has many merits,

such as low cost, small size and low power with relatively

high sensitivity. However, the fluxgate magnetometer is

subjected to bias, different scale factors and axis non-

orthogonality [4], and different magnetometers have

misalignment errors. Magnetic gradiometer has to be

operated on a vehicle for magnetic targets detection. The

magnetic gradiometer is also subjected to the magnetic

interference of vehicle, including soft iron and hard iron

interferences. The errors and vehicle magnetic interference

have great influence on the measurement of the magnetic

gradiometer, so the magnetic gradiometer must be calib-

rated before being used.

The vector magnetometer calibration methods are

reported in many literatures, and they are divided into two

kinds: vector calibration and scalar calibration. Vector

calibration [5, 6] requires a 3D Helmholtz coil system to

generate rigorous calibration field, and a high precision

tri-axial non-magnetic platform to measure the attitude of

the magnetometer. The calibration procedure is compli-

cated and the calibration instruments are very expensive.

However, in scalar calibration [7-10], it only needs to

rotate the magnetometer under stable geomagnetic field

environment. The calibration procedure is simple and

easy to realize. Scalar calibration for the magnetic gradio-

meter generally consists of two steps: the first step is to

calibrate the vector magnetometer errors and the second

step is to calibrate the misalignment errors. Pang et al.

[7], Yin et al. [8] and Gao et al. [9] have researched some

scalar calibration methods for the magnetic gradiometer

respectively. However, the vehicle magnetic interference

has not been taken into consideration in these methods.
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Yin et al. [10] have proposed an integrated calibration

method for the cross magnetic gradiometer, in which

vector magnetometer errors, misalignment errors, and

vehicle magnetic interference are considered. However, a

rotation of sensor output is introduced in the vector

magnetometer calibration process, and a nonlinear method

is proposed to calibrate the combined misalignment

errors. Yu et al. [11, 12] have proposed some calibration

methods for the tetrahedron magnetic gradiometer, in

which the calibration parameters are solved by using the

traceless and symmetric property of the magnetic gradient

tensor. However the above methods have the following

disadvantages: the convergence rates require further im-

provement, and the magnetic gradient tensor is traceless

and symmetric, which is a necessary but not a sufficient

condition for the magnetic gradiometer calibration.

In this paper, an integrated error calibration method of

the cross magnetic gradiometer is proposed considering

the vector magnetometer errors (scale factor, non-ortho-

gonal error and bias), misalignment errors and the vehicle

magnetic interference (soft iron interference and hard iron

interference). Firstly, an integrated error calibration model

for vector magnetometer is established, and ellipsoid

fitting parameters are calculated by the least square

algorithm under ellipsoid restriction, then the error calib-

ration matrices of the vector magnetometer are given by

the solution of the Cholesky factorization. Secondly, the

Orthogonal Procrustes problem is used to calculate the

misalignment error calibration matrices. Finally, simula-

tions and experiments are carried out for verification of

the integrated error calibration method.

2. The Cross Magnetic Gradiometer

2.1. The cross magnetic gradiometer

Magnetic gradient tensor is the vector gradient of the

magnetic flux density , which is defined as

. (1)

In an area which does not contain conduction currents,

both the divergence and the curl of the magnetic flux

density are zero, so the tensor is traceless and symmetric.

In actual measurement application, the magnetic gradi-

ent tensor is approximated by the difference between two

measurement readings of magnetic field at different

locations. The magnetic gradiometer formed by fluxgate

magnetometers has many different configurations, such as

triangle, square, cross, tetrahedron, hexahedron and so on.

The measurement accuracy of different configurations is

analyzed in [13]. Simulation results show that the cross

magnetic gradiometer has the highest measurement accuracy.

Inspired by the above results, a cross magnetic gradio-

meter is designed in this paper, with the structure chart of

the cross magnetic gradiometer shown in Fig. 1.

As shown in Fig. 1, the cross magnetic gradiometer

consists of four fluxgate magnetometers (1 to 4). A right-

handed coordinate system is established, the magneto-

meter 1 and the magnetometer 3 lie along x axes, the

magnetometer 2 and the magnetometer 4 lie along y axes.

The distance between two magnetometers along the same

axes is d, and d is called the baseline distance of magnetic

gradiometer. According to the difference equation, the

magnetic gradient tensor of point o can be written as

, (2)

where B1x is the x component of the magnetic field

measurement data of magnetometer 1. As shown in Eq.

(2), vector magnetometer errors, misalignment errors and

vehicle magnetic interference will influence the measure-

ment precision directly, so the magnetic gradiometer must

be calibrated before being used.

2.2. Integrated error calibration model for vector

magnetometer

The magnetometer onboard a vehicle is subjected to

non-orthogonal error, different scale factors, bias and

vehicle magnetic interference. Non-orthogonal error is

that the three axes of the triaxial fluxgate magnetometer
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Fig. 1. The cross magnetic gradiometer.
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may not be perfectly orthogonal. As shown in Fig. 2,

suppose that O − X0Y0Z0 is an ideal sensor’s orthogonal

coordinate system, and O − XYZ is the actual coordinate

system. Suppose that OZ is completely aligned with axis

OZ0. The plane YOZ is coplanar with the plane Y0OZ0. ψ

denotes angle between the axis OY and OY0. θ denotes

angle between the axis OX and the plane X0OY0. ϕ

denotes angle between the axis OX0 and the projection of

OX in the plane X0OY0.

Each axis of the magnetometer has different biases and

sensitivities, so we suppose that  are the

biases and sx, sy, sz are the scale factors for OX, OY, OZ

axes.

The magnetic interference sources of vehicle contain

two main components: the soft iron effects and the hard

iron bias. The soft iron effect is generated by the

interaction of ferromagnetic material with an external

magnetic field, and the soft iron interference changes the

strength and direction of the external magnetic field. The

hard iron bias stems from hard iron materials such as

permanent magnets and electric cables carrying constant

current. The hard iron bias, denoted as BHI = [BHIx, BHIy,

BHIz]
T, is a constant magnetic field both in direction and

strength, and it can be compensated with a simple

constant.

Taking all these errors and interference sources into

consideration, a mathematical model of magnetometer

output is written as follows

, (3)

where Bm, B are actual and theoretical outputs of the

magnetometer respectively,  is the scale

factor matrix,  is the

non-orthogonal error coefficient matrix, ε is the measure-

ment noise of magnetometer, BSI is the soft iron inter-

ference, and it can be written as BSI = KB, where

 is the soft iron effect coefficient

matrix, αij (i, j = x, y, z) are the proportional constants

representing the constant relating the soft iron interference

in the i direction resulting from the external magnetic

field applied in the j direction. Eq. (3) is the integrated

error calibration model of vector magnetometer.

2.3. Misalignment error model

Suppose that the magnetometer 1 is the reference

magnetometer, and the OX1Y1Z1 is the orthogonal coordi-

nate system of the reference magnetometer. Suppose that

 is the orthogonal coordinate system of magneto-

meter i. Then rotate  to  as follows: first,

rotate  through angle α about Z1 axes to ,

then rotate  through angle β about X' axes to

, at last, rotate  through angle γ

about Y'' axes to .

As shown in Fig. 3, α, β, γ are misalignment angles.

 is the theoretical output of the

reference magnetometer, and  is the

theoretical output of magnetometer i. The mathematical

relationship can be described as

, (4)

where , ,

 are coordinate-transformation

matrices. Eq. (4) is the misalignment error model.
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Fig. 2. Schematic diagram of the non-orthogonal error model.

Fig. 3. Schematic diagram of misalignment error.
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3. Integrated Calibration for Cross 
Magnetic Gradiometer

3.1. Integrated error calibration for vector magnetom-

eter

According to Eq. (3), the integrated error calibration

model for vector magnetometer can be simplified as follows

,  (5)

where  is the combined error parameter

matrix,  is the combined bias matrix.

Compared with the errors and the magnetic interference,

the measurement noise is relatively small, and hence it is

negligible, then the integrated error calibration model for

vector magnetometer can be written as follows

. (6)

According to Eq. (6), we know that the integrated

calibration for vector magnetometer is to estimate the

calibration matrices  and b, and then the actual output

of the magnetometer can be calibrated to the theoretical

output of the magnetometer. Within a homogeneous

magnetic field, the intensity of the magnetic field is a

constant. According to the integrated error calibration

model in Eq.(6), we obtain

. (7)

Let , then Eq. (7) can be simplified as

follows

. (8)

According to Eq. (8), we know that the locus of the

theoretical output is a sphere, and the locus of the actual

output is an ellipsoid, the general equation of an ellipsoid

can be written as follows

, (9)

where [x, y, z]T are actual outputs of the magnetometer.

We can obtain the set of actual outputs 

by presenting the magnetometer in different attitudes. Let

the sensor output matrix Xi = [

 and the parameter matrix P = [a,

b, c, f, g, h, p, q, r, d]T, then the algebraic distance of the

measurement point to the ellipsoid surface can be written

as follows

. (10)

The fitting can be approached by minimizing the sum

of the algebraic distances,

 (11)

where

,

and then parameter matrix P can be solved by the least

squares method. The parameter matrix P can be solved by

the least squares method. The relationships between the

parameter matrix P and calibration matrices A, b are

shown as follows

,  (12)

, (13)

. (14)

Since the intensity of the magnetic field  is known,

the calibration matrices A, b can be calculated from Eq.

(12), (13) and (14), and then the calibration matrix C −1

can be calculated from the decomposition of A. In

reference [10], an approximate value QE is obtained from

singular value decomposition of A

, (15)

where V is a unitary matrix, and the columns of V are

eigenvectors of A. The non-zero elements of the diagonal

matrix D is three eigenvalues of A. We can come to the

conclusion that . However, it is easy to see

that any rotation matrix RE satisfies  and

, then a rotation of the sensor output

will be introduced in the integrated error calibration

procedure. Since A is a symmetric positive definite

matrix, the Cholesky factorization of A is unique, and

there is only one upper triangular matrix C −1 with strictly

positive diagonal entries such that , then

the calibrated output of the magnetometer is in an ideal

sensor’s orthogonal coordinate system  shown

in Fig. 2. Then according to Eq. (6), we can calculate the

calibrated outputs using C −1 and b.

3.2. Misalignment error calibration

In the first step, the actual output of each magnetometer

can be transformed into sensor’s orthogonal coordinate

system respectively. The calibrated output of each mag-
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netometer will be identical if there is no misalignment

error. However, If misalignment angles exist, there are

rotation errors between calibrated output of magnetometer

i and calibrated output of the reference magnetometer.

According to the misalignment error model, the misalign-

ment error calibration is converted to estimate the coordi-

nate-transformation matrices. In this paper, a closed form

solution for the misalignment error calibration is obtained

by the solution of the Orthogonal Procrustes Problem.

Suppose we get  groups of measurement data by

presenting the magnetic gradiometer in different attitudes.

After the integrated error calibration for vector magneto-

meter, suppose  is the calibrated output

of magnetometer i, where , and

 is the calibrated output of the reference

magnetometer. Assume that  is nonsingular, and

denote the corresponding singular value decomposition

, where U, V are unitary matrices, and Σ

is a diagonal matrix. Then the optimal orthogonal matrix

which most closely maps Mi to M1, Specifically,

. (16)

The solution is unique and given by , then the

output of magnetometer i can be transformed into ortho-

gonal coordinate system of the reference magnetometer.

4. Simulations and Experiments

4.1. Simulations

The integrated calibration method is first analyzed

using simulated data. The total intensity of the geomag-

netic field is 50000nT, the declination angle is −7o and the

inclination angle is 55o. Put the cross magnetic gradio-

meter under the stable geomagnetic field environment,

and the sampling data is taken by presenting the cross

magnetic gradiometer in different attitudes. The baseline

distance is 0.5 m, and the error parameters of the four

magnetometers are listed in Table 1.

In Table 1, unit of the bias is nT, and unit of the angle is

rad. The soft iron effect coefficient matrix K and the hard

iron bias BHI of magnetometers are chosen as 

, ,

, ,

, ,

, .

The measurement noises in each axis of the four

magnetometers are independent Gaussian white noises

with mean of 0nT and variance of 9nT2. 200 groups of

measurement data are recorded. Error calibration matrices

are calculated and shown in Table 2.

The actual outputs are calibrated using the error calib-

ration matrices shown in Table 2, and the results are

shown in Fig. 4 and Fig. 5. The total intensity of the

geomagnetic field does not change with the misalignment

error calibration procedure, so the total intensity of the

geomagnetic field calibrated by the integrated calibration

method for vector magnetometer is shown in Fig. 4. The

fluctuations of the magnetic field intensity are large

before calibration, but the calibrated outputs are closed to

50000nT. The RMS errors (root-mean-square errors) of

the four magnetometers are 2.1734nT, 2.0735nT, 2.2402nT,

2.2659nT respectively, so we can come to the conclusion

that the integrated calibration method for vector magneto-

meter can calibrate different scale factors error, non-

orthogonal error, bias and magnetic interference of vehicle

effectively. The actual outputs and the calibrated outputs

of the magnetic gradient tensor components are shown in

Fig. 5. After the integrated error calibration for the four

magnetometers, the fluctuations of the magnetic gradient

tensor components are still very large, then after the

misalignment error calibration, the calibrated outputs are

closed to 0nT/m.
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Table 1. Error parameters of magnetometers.

sensor 1 sensor 2 sensor 3 sensor 4

kx 1.031 1.082 1.075 1.026

ky 0.988 0.991 1.021 0.993

kz 0.982 0.984 1.009 1.042

box 75 −62 −33 65

boy 57 43 −49 51

boz −42 39 47 −77

ψ 0.025 0.019 −0.014 0.011

ϕ 0.018 −0.013 0.027 0.016

θ −0.023 0.021 0.017 −0.028

α 0 −0.029 0.032 −0.028

β 0 0.022 −0.026 −0.034

γ 0 0.024 0.033 0.038
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Table 2. Error calibration matrices.
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Fig. 4. (Color online) Comparison of geomagnetic field intensity before and after calibration.

Fig. 5. (Color online) Comparison of magnetic gradient tensor components before and after calibration.
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In order to verify the robustness of the proposed

calibration method, three different simulations are carried

out, the variances of the Gaussian white noises are set as

9nT2, 12nT2, 15nT2 respectively. RMS errors of magnetic

gradient tensor components with different noises are

shown in Table 3.

As the variance of the Gaussian white noises grow, the

RMS errors will increase, and the RMS errors of

calibrated outputs are less than 10nT/m, so the proposed

calibration method has good accuracy and robustness.

4.2. Experiments

Experiments are carried out in Heikuang Mountain,

Yantai, China. The cross magnetic gradiometer is shown

in Fig. 6. Four fluxgate magnetometers are fixed on the

aluminum frame with plastic bolts, and the baseline

distance is 0.26m. A magnet is used to simulate the hard

iron bias of the vehicle, and the magnet is with the size of

50 mm × 35 mm. A silicon steel sheet is used to simulate

the soft iron effects. A proton magnetometer is used to

monitor the ambient magnetic intensity, the resolution of

the proton magnetometer is 0.1nT, the accuracy of the

proton magnetometer is 1nT. Mean of the geomagnetic

field intensity is 52561nT. 30 groups of measurement data

are recorded by presenting the cross magnetic gradio-

meter in different attitudes. 

Comparison of geomagnetic field intensity before and

after calibration is shown in Fig. 7. Before calibration, the

fluctuations of the geomagnetic field intensity are large.

However, after calibration, the calibrated outputs are

closed to 52561nT. Comparisons of magnetic gradient

tensor components before and after calibration are shown

in Fig. 8. We know that the magnetic gradient tensor

components should be 0nT/m in the uniform magnetic

field. Because of the vector magnetometer errors, mis-

alignment errors and magnetic interference of vehicle, the

actual outputs of the magnetic gradient tensor components

have big deviations. After calibration, the calibrated

outputs are closed to 0nT/m.

Comparisons of RMS errors of magnetic gradient tensor

components before and after calibration are shown in

Table 4. The max RMS error of the magnetic gradient

tensor components is 17109nT/m before calibration, and

the max RMS error can be reduced to 35.8nT/m after

calibration, so the proposed calibration method has good

calibration accuracy. However, the geomagnetic field is

not a uniform magnetic field, the gradient of the geo-

magnetic field is less than 0.02nT/m, and the ambient

Table 3. RMS errors of magnetic gradient tensor components with different noises.

Variance Bxx Bxy Bxz Byy Byz

actual outputs
9nT2

28438 31596 16136 22496 12278

calibrated outputs 6.4587 6.1209 6.0646 6.5588 6.1069

actual outputs
12nT2

28438 31596 16136 22496 12278

calibrated outputs 7.35 7.1401 7.029 7.5727 7.0211

actual outputs
15nT2

28439 31596 16136 22496 12278

calibrated outputs 8.2856 7.9134 7.9035 8.5516 7.8253

Fig. 6. (Color online) Cross magnetic gradiometer.

Fig. 7. Comparison of geomagnetic field intensity before and

after calibration.
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magnetic field used for calibration is not perfect, so the

RMS errors of the experiment results are larger than that

of the simulation results.

5. Conclusion

Considering the vector magnetometer errors, misalign-

ment errors and the magnetic interference of the vehicle,

an integrated calibration method for the cross magnetic

gradiometer is proposed. The simulation results show

that: after calibration, the RMS errors of magnetic gradi-

ent tensor components with different noises are less than

10nT/m, so the proposed calibration method has good

accuracy and robustness. The experiment results show

that the max RMS error of the magnetic gradient tensor

components is 17109nT/m before calibration, and the

max RMS error can be reduced to 35.8nT/m after calib-

ration, so the proposed integrated error calibration method

can effectively calibrate the cross magnetic gradiometer.

The proposed integrated error calibration method doesn’t

need the high precision tri-axial non-magnetic platform,

and the calibration procedure only needs to be carried out

under stable geomagnetic field environment. The calib-

ration procedure is simple and convenient, so the proposed

integrated error calibration method has high value for

practical application.
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Fig. 8. Comparison of magnetic gradient tensor components before and after calibration.

Table 4. Comparison of RMS errors of magnetic gradient ten-

sor components before and after calibration.

Bxx Bxy Bxz Byy Byz

Actual output 12483 4833 5430 17109 6752

Calibrated output 32.9 35.8 29.4 27.5 25.2


