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Cylinders, tubes, cuboids, etc. are basic magnet shapes used in permanent magnet machines. The relative posi-
tions between magnets include parallel, perpendicular, or inclined. The force and torque between two cuboid
magnets of almost any status and two cylindrical magnets with paralleled axes have been solved. Using the the-
ory of magnetic charges and magnetic Coulomb’s law, this study derives a mathematical model for interaction
forces and torques between two perpendicular magnetic tubes in three dimensions. Using this model, the effects
of tube relative positions on the interaction forces and torques is analyzed by numerical calculation. The model
can also express interaction forces and torques between a magnetic tube and magnetic cylinder or between two
magnetic cylinders when the inner radius of one magnetic tube is zero or the radii of both tubes are zero. This
study provides the theoretical background for magnetic tube and cylinder applications, such as magnetic drive
or control across space in mechanical, medical treatment, chemical industry, food production, aerospace, etc.
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1. Introduction

In some applications, such as magnetic bearings, pumps,
couplings, springs, medical instruments, etc. [1-6], the
calculation of interaction force, torque and field is very
important [7-13]. The interaction is related to shape,
magnetization direction, magnetic polarization, and relative
position of the permanent magnets outside the magnet
dimensions.

For parallel or perpendicular cuboidal permanent
magnets, analytical models of the interaction forces and
torques were established from the interaction energy
between the magnets [14-17], and experimentally verified.
Analytical expressions for the torque on cuboidal per-
manent magnets were obtained using the Lorentz force
method [18], and torque of a permanent magnet coupling
was derived using the analytical formula of the tangential
force [19]. The gyroscopic moment of a passive magnetic
axial bearing with Halbach magnetized array (constituting
of some cuboidal magnets) was calculated using a two-
dimensional finite element method [10].

For cylindrical permanent magnets, the magnetic force
between two coaxial/parallel magnets has been calculated
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assuming uniform magnetization and studied by magneto-
static interaction energy [20], Kelvin’s formula [21],
Ampere’s formula [22], and Lorentzian model [23],
respectively. The analytical expression of the attractive
force between two arrays of cylindrical permanent mag-
nets was derived from the derivative of the total magneto-
static interaction energy with respect to the axial coordi-
nate [24, 25]. Interaction energy and force between two
parallel thin magnetic nanotubes with axial magnetization
have been calculated by four different approaches [26].
The interaction energy, and axial and radial interaction
forces have been expressed semi-analytically in magneto-
static interaction energy when a cylindrical permanent
magnet is inside a tubular permanent magnet [27]. For
two tube shaped magnets, the interaction force between
two coaxial magnets with the same magnetization, used
as magnetic bearings, has been investigated using the
theory of magnetic charges and magnetic Coulomb’s law
[28, 29], as has the attractive force between two coaxial
cylindrical magnets with opposite axial magnetizations
[30]. Transmitting torque and synchronization of plane
type magnet couplings, consisting of a number of couples
of magnetic poles, have been studied theoretically and
experimentally [31].

However, interaction force and torque between two
perpendicular magnetic tubes or cylinders is rarely report-
ed. This paper derives the models of force and torque
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between two perpendicular magnetic tubes using the
theory of magnetic charges and magnetic Coulomb’s law,
and the method for numerical calculation of the magnetic
force using the theory of magnetic charges has been
experimental verified many times [28-31].

2. Mathematical model

2.1. Forces between two perpendicular magnetic tubes

Figure 1 shows the geometry considered for the
perpendicular magnetic tubes. The tubes are made of
NdFeB permanent magnets, with tube axes perpendicular
to each other in three dimensions. Magnetizations j, and
J, are along the tube axes and assumed to be rigid and
uniform in each magnetic tube. O and O, are the centers
of the first (MT}) and second (MTy) magnetic tube, and
they are also the origins of the coordinates Oxyz and O,y,.
For MTj, length, and inner and outer radii = 2/;, R;; and
Ry,, respectively. For MTy, length, and inner and outer
radii = 2/, Ry;, and Ry, respectively. The center of MTy
(0y) is relative to the center of MT; (O) along the three
axes of Oxyz, expressed by x, vy and z,, respectively, and
axis Oy, is inclined to axis Oy, expressed by angle .

S, and S; are the South Poles of MT; and MTy;, as well
as S, and S; are the North Poles of MT; and MTy,
respectively. Magnetization directions Jj, and J, are
perpendicular in three dimensions, as shown in Fig. 1.
The magnetic charge density on the side surfaces of the
two tubes is o = + J (North Pole) and —o = — J (South
Pole). For rare-earth permanent magnets, magnetic charge

(b) Front view

(c) Lateral view

Fig. 1. (Color online) Magnetic tubes configuration.
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face density can be expressed as o = B,, where B, is the
remanence of permanent magnets. P is a micro-unit area
on the South Pole surface of MT). Area = rndrda, and its
magnetic charges can be expressed by —B rdnde.
Similarly, magnetic charges at point O on the South Pole
of MTy; can be expressed by —B ,rdrdf. Where 7 is
the vector from the center of S, to point P, 7, is the vector
from the center of S; to point O, & and S are the azimuthal
angle of vector 7 and 7, respectively. Thus, from the
magnetic Coulomb’s law, interaction forces between two
micro-unit areas in the four sided surface can be expressed
as

=~ (-B,))x(-B,) nndrdrdadf
dF; = ] =2 1_,~3 ﬂ'rlz
47, |r13
-~ (=B ))x(+B,) rndndrndadf
dF,, = 14 =2 1_. I8 Ny
””” i M)
= _(+B)x(-B,) nndndrdadf
dF23 = 4 : ) Ty
72:[10 |r23|
-~ (+B,))x(+B,) rndrdrdadf
dE, = 14 2) hh 1_‘ 23 P
7Ty |r24|

where 1, is permeability of vacuum, #, =47x107
(H-m™); dF;, is the differential magnetic force between
two micro-unit areas, P (on the face of S;) and Q (on the
face of S;), 7, is the vector of P to O, ;713| is the mode of
vector 7,. Similarly, there are differential magnetic forces
dr,, dF,,, and dF,,, the vectors 7,, 7, and 7,,, and the
modes |F,4 , |5/, and |1724|
The projection form of dF; is

(-B,)x(-B,) nndndrdad
dESx = l 22,12 1Q‘3 /B']/]Sx
47y, |,,]3|
(=B,)x(-B,) nndrdrdadp
dE3y = 1 2/ 12 1_. _3 . }"Uy s (2)
Aty |r13
(=By)x(-B,) nrdrdrdadp
dE3: = 14 22,12 1— "3 .ri}:
7 |r13

where ry3,, 713, and 75 are the projections of 7, to the
Ox, Oy, and Oz axes, respectively; and the projection
forms of dF;,, dF,,, and dF,, can be similarly expressed,
but are not shown here for space considerations.

The differential form of the interaction force along the
three axes is

dF;c = dE}x + dE4,v + dE},v + d‘F'24x
dF, =dF;, +dF, +dF,; +dFf,, . 3)

13y 23y

dF; = d‘ESz +d‘E4z +dF;3z +dF‘24z

Combining Egs. (1) and (2), then substituting the result
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into Eq. (3), the integral form of the forces can be
expressed as

T 3
Ho R, R, 0 0 ‘724

F :QHH +L-\;—"%—@+ e }lndrdr,dadﬁ

. BB, R,jLR].ZTZJF. Loy Ty Ty drdrdadf | (4)
=12, B —— i o
! 4mu, Ry Ry 00 Tis ‘r LX)
B B R, R, 2721 P I r 7.
F = B2 L_L_L+ 2453 rdrndr,dadf
47t RJ’R;‘T(;[(;[ "”13‘ ‘VZS‘ 7 }]2 o

where (see Fig. 1)
s = Vo +Z, + % +l—2 +h _(1—1 +1).
Therefore, the projection form and mode of vector 7#,
can be expressed as
Ny =X, — 1 sin f—1,
T3y = Yot siny +r,cos feosy —r cosa

- : oy 5
hs. =2, +1,cosy—r,cos Bsiny —rsina ©)

~_ [2 2 2
|”13| =4/l T3, Ths,

Similarly, the projection forms and modes of vectors
B4, I, and 7, can be expressed as

rl4x:rl3r
Ty =hs, = 2L siny =y, —1l,siny +r, cos Bcosy —r,cos

Ny, =h,, —2l,cosy =z, —1,cosy —r,cos fsiny —rnsina » (6)
— | _ 2 2 2
|r]4|_\/rl4x+rl4_\'+rl4:

Py, =Hs, +21, =X, — 1, sin S+,

I3y = N3y
, (N
r23z - rl}:
- 2 2 2
Ps| = 4oz T 13y T103;
and
Toax = Tozx

Fay =Ty, =20y 8iny =y, =1, siny +r, cos fcos y —r, cosa

. (8)

To4: = Na:
~_ [2 2 2
|rz4| = Tax t oy T4

Substituting Egs. (5)-(8) into Eq. (4), allows the
components of the total interaction force to be calculated
(the detailed final equations are not shown here for space
considerations).

2.2. Torques between two perpendicular magnetic
tubes
Torques between MT; and MTy are relative to the
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center of the torque. We discuss the particular case of
torque of dF, around O, expressed by d7),. Force dF,
acts on point P, and the vector of dF,, to O is 7,,. From
Fig. 1, the projection form of 7,, can be expressed as

Tore =1
Topy =1 COSQL 9)
Top: =hSIM&

Hence, the torque of dF;, around O can be expressed as

i j k
dT; 5 =Top dﬁ Topx Topy Top:
dESx dEZiv dESz
' , (10)
(1 cos adF,, —risinadFy, )i
= +(rsinadf;, _lldE3z)J
+(,dF,, 1, cos adFy,, )k

where ;, j, k are unit vectors of axes Ox, Oy, and Oz,
respectively. Thus, Eq. (10) can be expressed as the
projection form of d7,,

r sin adF,

13y

dT’]’3.\‘ = Iﬁl COS adE3z
dT13 ,=rnsinadf;, —LdF;,
d7,;, =4dF,

13z 13y

, (11

—rncosadF;,

where d7;, , dT;, , and d7;,, are the projections of d7;, to
the Ox, Oy, and Oz axes, respectively.
Similarly, the projection forms of d7,,, d7,,, and d7,,,

232
can be expressed as, respectively,

dT,;, =r cosadF,;. —r sinadF;,
dT,;, =nsinadF,; +LdF,;, R (12)
dT,;, =-4dF,;, —r cosadFy;,
dT,,, =r cosadF,_ —rsinadF,,
d714\ —”']SinadE4\__ldE4_ B (13)
d7,,. =1dF,, —r cosadF,,

and
dT,, =rcosadF,, —rsin adFu)
d7,, =rsinadfF,, +1dF,, ] (14)
d7,,. =-1dF,,, —r cosadF,,,

Thus,

dT = dT{3\ +d]’{4x +dT23x +dT24x
dT, =dT,, +d7T,,, +dT,;, +dT,,, , (15)
dT; - d7;3: +d7;4: +d7‘23: +d1‘24:

and, combining Egs. (2) and (11)-(15),




B B Rig Ryg 2727

T =—r I J. J. J(A cosa + 4, sina )y’ r,dadfdrdr,
4”/"0 R, R, 00
B B R Ryg 2721

T,=—r—"=2 J J J' (A sina+ A0, Jir,dadBdrdr,

4”#0 Ri Ry 0 0 - (16)

B.B Ry Ry 2721
=== [ [ [ (4, + A cosa Yir,dad Bdrdr,
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where
4 = N3 M. "14 Tz Ny r23y Nay Ty
B =B - v, h=—"5 T
UET I X |’” |”24| "’13‘ |7
o e - T Nay | P _ M Ty My M
3T -3 -3 3 4T -3 -3
s I3 "'14 ‘r24 s I3
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Substituting Egs. (5)-(8) into Eq. (16), the components
of the total interaction torque can be calculated (the
detailed final equations are not shown here for space
considerations).

3. Numerical Analysis of Interaction
Forces and Torques

Interaction forces and torques expressions are some-
what complicated, which makes it difficult to derive the
analytical forms. Fortunately, there are many convenient
software packages and good performance personal
computers, using the Gauss-Legendre integration method,
the numerical solution can be performed conveniently and
rapidly.

Table 1 shows the parameters [30] and geometry di-
mensions of the NdFeB permanent magnets. According to
the relative positions and inclined angle of MTy;, changes
for interaction forces and torques with three coordinate
axes and the inclined angle are calculated.

Table 1. NdFeB material parameters and magnetic tube
dimensions.

Material parameters Magnetic tube dimensions

MT;

Length, 2/, =0.020 m
Inner radius, R;; = 0.020 m
Outer radius, Ry, = 0.040 m

Remanence, B, =1.298 T

Coercive force, H. = 900 KA'm

MTy

Length, 2, =0.020 m
Inner radius, R,; = 0.020 m
Outer radius, R», = 0.040 m

Energy product,
(BH)max =305 kJ'm ™
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3.1. Influence of displacement on interaction forces
and torques

Figure 2 shows the relationship between interaction
forces, torques, and tube axes when the center of MTy,
0,, is on the axes of coordinate Oxyz.

Figures 2(a) and 2(b) show the components of inter-
action forces and torques, respectively, when yy =2z, =0, ¥
=0, and O, is moving along the Ox axis. Forces F, and
F,, and torques T and T are constantly zero with changing
xo. Force F, and torque 7, have their extreme values (40N
and —2.9 N-'m, respectively) when x, = 50 mm, which
means that the extreme values appear when the tubes are
contacting.

Figures 2(c) and 2(d) show the components of interaction
forces and torques, respectively, when xy =zy =0, y= 0,
and O, is moving along the Oy axis. Forces F\, F,, and
F, and torques T, and T, are constantly zero with chang-
ing y,. Torque T, has extreme value (2.6 N-m) when the
tubes are contacting (yo = 80 mm).

Figures 2(e) and 2(f) show the components of inter-
action forces and torques, respectively, when x, = 5 = 0,
=0, and O, is moving along the Oz axis. Forces F), and
F_, and torques T, and T, are constantly zero with chang-
ing z. Force F is as the same as F. in Fig. 2(a), and T,

0.5
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o

Torque (N.m)

N
b o
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Fx, Fy, Fz
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80 100 150 200 250 300 80 100 150 200 250 300
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Torque (N.m)

Fig. 2. (Color online) Relationships between interaction forces,
torques, and tube axes.
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Fig. 3. (Color online) Relationships of interaction forces and
torques with xo (g = 0, yo = z).

reaches extreme value (2.6 N'-m) when zy = 64 mm.

Figures 3(a) and 3(b) show the components of inter-
action forces and torques, respectively, for varying x
when O, is not on Oxyz, such as y= 0, y, =z, = 50 or 80
mm. Force and torque extreme values increase with
decreasing z,, because the force between two magnetic
charges increases with decreasing distance between the
charges.

3.2. Influence of the inclined angle on interaction
forces and torques

Figure 4 shows the influence of y on the interaction
forces and torques. Figures 4(a) and 4(b) show the relation-
ships of interaction forces and torques, respectively, with
ywhen yy = zy = 0, and xy = 100 mm. F, and T,, are con-
stantly zero, while F,, F., T,, and T_, follow a sinusoidal
pattern, with initial phase difference 7/2.

Figures 4(c) and 4(d) show the relationships of inter-
action forces and torques, respectively, with » when x, =
29 =0, yo = 100 mm. F,, T,, and T, changing periodically
with 2. The other forces and torques are constantly zero.

—39—

0.2

Force (N)
IS

Torque (N.m)
o

IS}

-0.2
0 w2 T 3n/2 2m

20
K4 TNcall.T “‘
10t/ Y Fx
I e
< | \
g o -
<4 \
s ' h
Fy, Fz ‘\ ’,
-10 Y '
‘\ - - ~o ‘I
20
0 /2 ks 372 2r 0 /2 ™ 3/2 27
7 (rad) 7 (rad)
(©) (@)
20
’ Tee- A
10 . K \
~ o Y £
z ' ' z
o 0 L . o
5 N | s
i \ E
Fy,Fz
10 / y '
20
0 72 ™ 372 27 0 72 ™ 37/2 27
7 (rad) ~ (rad)
(e 6

Fig. 4. (Color online) Relationships of interaction forces and
torques with the inclined angle, ¥.

Figures 4(e) and 4(f) show the relationships of inter-
action forces and torques, respectively, with » when x, =
yo = 0, zo = 100 mm. The forces are similar to Fig. 4(c),
with F, lagging a quarter of a cycle; T, is constantly zero;
T. is similar to 7, in Fig. 4(c), but ahead quarter of a
cycle; and 7, is similar to 7. in Fig. 4(c), but lags a
quarter of a cycle.

4. Conclusions

The following conclusions can be derived from this
study.

(a) A mathematical model of forces and torques between
two perpendicular magnetic tubes was successfully derived
using the theory of magnetic charges and magnetic
Coulomb’s law.

(b) Forces and torques between two perpendicular
magnetic tubes can be obtained numerically from the
model. When the inclined angle, ¥ = 0, and the tubes are
contacting, it means x, =50 mm, y,=2zy=0, force F,
reaches its extreme value of 40N and torque 7, reaches its
extreme value of —2.9N'm.
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(c) The model can also be used to calculate the forces
and torques between two perpendicular magnetic cylinders
or tubes or a cylinder and a tube.

(d) This work provides theoretical guidance for engi-
neering applications of perpendicular magnetic tubes or
cylinders.
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