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Cylinders, tubes, cuboids, etc. are basic magnet shapes used in permanent magnet machines. The relative posi-

tions between magnets include parallel, perpendicular, or inclined. The force and torque between two cuboid

magnets of almost any status and two cylindrical magnets with paralleled axes have been solved. Using the the-

ory of magnetic charges and magnetic Coulomb’s law, this study derives a mathematical model for interaction

forces and torques between two perpendicular magnetic tubes in three dimensions. Using this model, the effects

of tube relative positions on the interaction forces and torques is analyzed by numerical calculation. The model

can also express interaction forces and torques between a magnetic tube and magnetic cylinder or between two

magnetic cylinders when the inner radius of one magnetic tube is zero or the radii of both tubes are zero. This

study provides the theoretical background for magnetic tube and cylinder applications, such as magnetic drive

or control across space in mechanical, medical treatment, chemical industry, food production, aerospace, etc.
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1. Introduction

In some applications, such as magnetic bearings, pumps,

couplings, springs, medical instruments, etc. [1-6], the

calculation of interaction force, torque and field is very

important [7-13]. The interaction is related to shape,

magnetization direction, magnetic polarization, and relative

position of the permanent magnets outside the magnet

dimensions.

For parallel or perpendicular cuboidal permanent

magnets, analytical models of the interaction forces and

torques were established from the interaction energy

between the magnets [14-17], and experimentally verified.

Analytical expressions for the torque on cuboidal per-

manent magnets were obtained using the Lorentz force

method [18], and torque of a permanent magnet coupling

was derived using the analytical formula of the tangential

force [19]. The gyroscopic moment of a passive magnetic

axial bearing with Halbach magnetized array (constituting

of some cuboidal magnets) was calculated using a two-

dimensional finite element method [10]. 

For cylindrical permanent magnets, the magnetic force

between two coaxial/parallel magnets has been calculated

assuming uniform magnetization and studied by magneto-

static interaction energy [20], Kelvin’s formula [21],

Ampere’s formula [22], and Lorentzian model [23],

respectively. The analytical expression of the attractive

force between two arrays of cylindrical permanent mag-

nets was derived from the derivative of the total magneto-

static interaction energy with respect to the axial coordi-

nate [24, 25]. Interaction energy and force between two

parallel thin magnetic nanotubes with axial magnetization

have been calculated by four different approaches [26].

The interaction energy, and axial and radial interaction

forces have been expressed semi-analytically in magneto-

static interaction energy when a cylindrical permanent

magnet is inside a tubular permanent magnet [27]. For

two tube shaped magnets, the interaction force between

two coaxial magnets with the same magnetization, used

as magnetic bearings, has been investigated using the

theory of magnetic charges and magnetic Coulomb’s law

[28, 29], as has the attractive force between two coaxial

cylindrical magnets with opposite axial magnetizations

[30]. Transmitting torque and synchronization of plane

type magnet couplings, consisting of a number of couples

of magnetic poles, have been studied theoretically and

experimentally [31].

However, interaction force and torque between two

perpendicular magnetic tubes or cylinders is rarely report-

ed. This paper derives the models of force and torque
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between two perpendicular magnetic tubes using the

theory of magnetic charges and magnetic Coulomb’s law,

and the method for numerical calculation of the magnetic

force using the theory of magnetic charges has been

experimental verified many times [28-31].

2. Mathematical model

2.1. Forces between two perpendicular magnetic tubes

Figure 1 shows the geometry considered for the

perpendicular magnetic tubes. The tubes are made of

NdFeB permanent magnets, with tube axes perpendicular

to each other in three dimensions. Magnetizations  and

 are along the tube axes and assumed to be rigid and

uniform in each magnetic tube. O and O2 are the centers

of the first (MTI) and second (MTII) magnetic tube, and

they are also the origins of the coordinates Oxyz and O2y2.

For MTI, length, and inner and outer radii = 2l1, R1i and

R1o, respectively. For MTII, length, and inner and outer

radii = 2l2, R2i, and R2o, respectively. The center of MTII

(O2) is relative to the center of MTI (O) along the three

axes of Oxyz, expressed by x0, y0 and z0, respectively, and

axis O2y2 is inclined to axis Oy, expressed by angle γ. 

S1 and S3 are the South Poles of MTI and MTII, as well

as S2 and S4 are the North Poles of MTI and MTII,

respectively. Magnetization directions  and  are

perpendicular in three dimensions, as shown in Fig. 1.

The magnetic charge density on the side surfaces of the

two tubes is σ = + J (North Pole) and −σ = − J (South

Pole). For rare-earth permanent magnets, magnetic charge

face density can be expressed as σ = Br, where Br is the

remanence of permanent magnets. P is a micro-unit area

on the South Pole surface of MTI. Area = , and its

magnetic charges can be expressed by .

Similarly, magnetic charges at point Q on the South Pole

of MTII can be expressed by . Where  is

the vector from the center of S1 to point P,  is the vector

from the center of S3 to point Q, α and β are the azimuthal

angle of vector  and , respectively. Thus, from the

magnetic Coulomb’s law, interaction forces between two

micro-unit areas in the four sided surface can be expressed

as 

, (1)

where μ0 is permeability of vacuum, 

( );  is the differential magnetic force between

two micro-unit areas, P (on the face of S1) and Q (on the

face of S3),  is the vector of P to Q,  is the mode of

vector . Similarly, there are differential magnetic forces

, , and , the vectors , , and , and the

modes , , and . 

The projection form of  is

, (2)

where r13x, r13y, and r13z are the projections of  to the

Ox, Oy, and Oz axes, respectively; and the projection

forms of , , and  can be similarly expressed,

but are not shown here for space considerations.

The differential form of the interaction force along the

three axes is 

. (3)

Combining Eqs. (1) and (2), then substituting the result

1
J

�

2
J

�

1
J

�

2
J

�

1 1
d dr r α

1 1 1
d d

r
B r r α−

2 2 2
d d

r
B r r β−

1
r

�

2
r
�

1
r
�

2
r
�

r1 r2 1 2 1 2

13 133

0 13

r1 r2 1 2 1 2

14 143

0 14

r1 r2 1 2 1 2

23 233

0 23

r1 r2 1 2 1 2

24 243

0 24

( ) ( ) d d d d
d

4

( ) ( ) d d d d
d

4

( ) ( ) d d d d
d

4

( ) ( ) d d d d
d

4

B B r r r r
F r

r

B B r r r r
F r

r

B B r r r r
F r

r

B B r r r r
F r

r

α β

πμ

α β

πμ

α β

πμ

α β

πμ

− × −⎧
= ⋅ ⋅⎪

⎪
⎪ − × +

= ⋅ ⋅⎪
⎪
⎨

+ × −
= ⋅ ⋅

+ × +
= ⋅ ⋅

⎩

�

�

�

�

�

�

�

�

�

�

�

�

⎪
⎪
⎪
⎪
⎪

7

0
4 10μ π

−= ×
1H m−⋅

13
dF
�

13
r
�

13
r

�

13
r
�

14
dF
�

23
dF
�

24
dF
�

14
r
�

23
r
�

24
r
�

14
r
�

23
r
�

24
r

�

13
dF
�

r1 r2 1 2 1 2

13 133

0 13

r1 r2 1 2 1 2

13 133

0 13

r1 r2 1 2 1 2

13 133

0 13

( ) ( ) d d d d
d

4

( ) ( ) d d d d
d

4

( ) ( ) d d d d
d

4

x x

y y

z z

B B r r r r
F r

r

B B r r r r
F r

r

B B r r r r
F r

r

α β

πμ

α β

πμ

α β

πμ

⎧ − × −
⎪ = ⋅ ⋅
⎪
⎪

− × −⎪
= ⋅ ⋅⎨

⎪
⎪ − × −
⎪ = ⋅ ⋅
⎪⎩

�

�

�

13
r
�

14
dF
�

23
dF
�

24
dF
�

13 14 23 24

13 14 23 24

13 14 23 24

d d d d d

d d d d d

d d d d d

x x x x x

y y y y y

z z z z z

F F F F F

F F F F F

F F F F F

⎧ = + + +
⎪

= + + +⎨
⎪

= + + +⎩

Fig. 1. (Color online) Magnetic tubes configuration.
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into Eq. (3), the integral form of the forces can be

expressed as 

, (4)

where (see Fig. 1) 

.

Therefore, the projection form and mode of vector 

can be expressed as

. (5)

Similarly, the projection forms and modes of vectors

, , and  can be expressed as 

, (6)

, (7)

and

. (8)

Substituting Eqs. (5)-(8) into Eq. (4), allows the

components of the total interaction force to be calculated

(the detailed final equations are not shown here for space

considerations).

2.2. Torques between two perpendicular magnetic

tubes

Torques between MTI and MTII are relative to the

center of the torque. We discuss the particular case of

torque of  around O, expressed by . Force 

acts on point P, and the vector of  to O is . From

Fig. 1, the projection form of  can be expressed as 

. (9)

Hence, the torque of  around O can be expressed as

, (10)

where , ,  are unit vectors of axes Ox, Oy, and Oz,

respectively. Thus, Eq. (10) can be expressed as the

projection form of , 

, (11)

where , , and  are the projections of  to

the Ox, Oy, and Oz axes, respectively.

Similarly, the projection forms of , , and ,

can be expressed as, respectively,
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, (16)

where 

, ,

, ,

, and .

Substituting Eqs. (5)-(8) into Eq. (16), the components

of the total interaction torque can be calculated (the

detailed final equations are not shown here for space

considerations).

3. Numerical Analysis of Interaction 
Forces and Torques

Interaction forces and torques expressions are some-

what complicated, which makes it difficult to derive the

analytical forms. Fortunately, there are many convenient

software packages and good performance personal

computers, using the Gauss-Legendre integration method,

the numerical solution can be performed conveniently and

rapidly.

Table 1 shows the parameters [30] and geometry di-

mensions of the NdFeB permanent magnets. According to

the relative positions and inclined angle of MTII, changes

for interaction forces and torques with three coordinate

axes and the inclined angle are calculated. 

3.1. Influence of displacement on interaction forces

and torques

Figure 2 shows the relationship between interaction

forces, torques, and tube axes when the center of MTII,

O2, is on the axes of coordinate Oxyz.

Figures 2(a) and 2(b) show the components of inter-

action forces and torques, respectively, when y0 = z0 = 0, γ

= 0, and O2 is moving along the Ox axis. Forces Fx and

Fy, and torques Tx and Tz are constantly zero with changing

x0. Force Fz and torque Ty have their extreme values (40N

and −2.9 N·m, respectively) when x0 = 50 mm, which

means that the extreme values appear when the tubes are

contacting.

Figures 2(c) and 2(d) show the components of interaction

forces and torques, respectively, when x0 = z0 = 0, γ = 0,

and O2 is moving along the Oy axis. Forces Fx, Fy, and

Fz, and torques Tx and Tz, are constantly zero with chang-

ing y0. Torque Ty has extreme value (2.6 N·m) when the

tubes are contacting (y0 = 80 mm).

Figures 2(e) and 2(f) show the components of inter-

action forces and torques, respectively, when x0 = y0 = 0,

γ = 0, and O2 is moving along the Oz axis. Forces Fy and

Fz, and torques Tx and Tz are constantly zero with chang-

ing z0. Force Fx is as the same as Fz in Fig. 2(a), and Ty
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Table 1. NdFeB material parameters and magnetic tube
dimensions.

Material parameters Magnetic tube dimensions

Remanence, Br = 1.298 T

Coercive force, Hc = 900 kA·m

Energy product,

(BH)max = 305 kJ·m−3

MTI

Length, 2l1 = 0.020 m

Inner radius, R1i = 0.020 m

Outer radius, R1o = 0.040 m

MTII

Length, 2l2 = 0.020 m

Inner radius, R2i = 0.020 m

Outer radius, R2o = 0.040 m
Fig. 2. (Color online) Relationships between interaction forces,
torques, and tube axes.
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reaches extreme value (2.6 N·m) when z0 = 64 mm.

Figures 3(a) and 3(b) show the components of inter-

action forces and torques, respectively, for varying x0
when O2 is not on Oxyz, such as γ = 0, y0 = z0 = 50 or 80

mm. Force and torque extreme values increase with

decreasing z0, because the force between two magnetic

charges increases with decreasing distance between the

charges.

3.2. Influence of the inclined angle on interaction

forces and torques

Figure 4 shows the influence of γ on the interaction

forces and torques. Figures 4(a) and 4(b) show the relation-

ships of interaction forces and torques, respectively, with

γ when y0 = z0 = 0, and x0 = 100 mm. Fx and Tx, are con-

stantly zero, while Fy, Fz, Ty, and Tz, follow a sinusoidal

pattern, with initial phase difference π/2. 

Figures 4(c) and 4(d) show the relationships of inter-

action forces and torques, respectively, with γ when x0 =

z0 = 0, y0 = 100 mm. Fx, Ty, and Tz, changing periodically

with 2π. The other forces and torques are constantly zero.

Figures 4(e) and 4(f) show the relationships of inter-

action forces and torques, respectively, with γ when x0 =

y0 = 0, z0 = 100 mm. The forces are similar to Fig. 4(c),

with Fx lagging a quarter of a cycle; Tx is constantly zero;

Tz is similar to Ty in Fig. 4(c), but ahead quarter of a

cycle; and Ty, is similar to Tz in Fig. 4(c), but lags a

quarter of a cycle.

4. Conclusions

The following conclusions can be derived from this

study.

(a) A mathematical model of forces and torques between

two perpendicular magnetic tubes was successfully derived

using the theory of magnetic charges and magnetic

Coulomb’s law.

(b) Forces and torques between two perpendicular

magnetic tubes can be obtained numerically from the

model. When the inclined angle, γ = 0, and the tubes are

contacting, it means x0 = 50 mm, y0 = z0 = 0, force Fz

reaches its extreme value of 40N and torque Ty reaches its

extreme value of −2.9N·m. 

Fig. 3. (Color online) Relationships of interaction forces and
torques with x0 (g = 0, y0 = z0).

Fig. 4. (Color online) Relationships of interaction forces and
torques with the inclined angle, γ.
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(c) The model can also be used to calculate the forces

and torques between two perpendicular magnetic cylinders

or tubes or a cylinder and a tube.

(d) This work provides theoretical guidance for engi-

neering applications of perpendicular magnetic tubes or

cylinders.
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