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In this work, the dynamic behavior of a spin valve oscillator with a Nickel-free layer, modeled by the Landau-

Lifshitz-Slonczewski equation is studied. It is considered a constant applied field and a spin current with two

components, a constant term and a term with a time-dependent harmonic modulation. Techniques to charac-

terize dynamic behaviors of systems, such as Lyapunov exponents, bifurcation diagram, phase portraits, time

series, and Fourier spectra were used. It is demonstrated that the system presents multiple transitions between

chaotic and regular states when the constant magnetic field, the magnitude, and frequency of the alternating

current are varied. Furthermore, it is found that the effect of the magnetic field and the amplitude of the cur-

rents play a meaningful role in the chaotic behavior start.
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1. Introduction

In recent years, numerous theoretical and experimental

investigations on the dynamic properties of magnetization

of magnetic nanoparticles have been encouraged by the

potential technological applications that these particles

might have. In spintronics, applications based on this

principle combine electronics and magnetism by using the

electron as a unit of charge plus the intrinsic spin of the

electron as a magnetic unit [1-4]. A spin-polarized current

flowing through a pinned magnetic layer can generate a

Spin-Transfer Torque (STT) on a free ferromagnetic layer

[5-7]. The STT is key to technological development that

aims to fabricate the of magnetic random access memory

(STT-MRAM) for ultrafast applications, employing

ferromagnetic, ferrimagnetic, or antiferromagnetic materials

[8-11]. The magnetic motions that exhibit the ferromagnetic

free layer due to torque have been studied experimentally

and theoretically. Magnetoresistance measurements made

using samples of different magnetic material concentration

(Co, Cu) forming a multi-layer structure have shown

different dynamical regions on the phases diagram, mag-

netic field - current (H-I) such as stationary equilibrium

region for the magnetization, and a steady magnetization

precession region [12]. Micromagnetic simulations verify

these observations, as well as the identification of a

chaotic region [13]. The Landau-Lifshitz-Gilbert-Slonczewski

(LLGS) equation models the temporal evolution of the

magnetization on the free layer to zero temperature [14-

16]. Different configurations of the spin-polarized current

and the magnetic field have been considered in the spin-

valve systems, observing different dynamical behaviors: a

periodic dynamic with various periodicities, a quasi-periodic,

and a chaotic. Numerical simulations have found that in

these systems, the route to chaos is through a cascade of

period-doubling bifurcations [17-19]. 

This work aims to provide a better understanding of the

dynamic transitions occurring in an anisotropic magnetic

free layer of a spin-valve system, due to a constant magnetic

field and a time-dependent current density. Furthermore,

this work clarifies the effects that the system control

parameters have on the chaotic behavior inception. These

results can motivate further experiments in this area.

The dynamical behavior of the system is analyzed using

different dynamic indicators. The Lyapunov exponents,

bifurcation diagrams, Fourier power spectra, phase portraits,

and time series, which are potent techniques applied in

previous works [20-26], are calculated. This article is
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organized as follows: Section 2 presents the theoretical

model description. Then, in Section 3, numerical results

and analyses of them are shown. Finally, in Section 4,

relevant conclusions of this investigation are stated.

2. Model

Let us consider a spin valve system consisting of three

sandwich layers: two ferromagnetic layers separated by a

non-ferromagnetic spacer layer. There is a constant external

magnetic field HE and an electrical current Je with two

components, a constant term and a term involving a time-

dependent harmonic modulation. The electron’s spin

flowing into the spin valve does not have a preferred

polarization, i.e., the spin current is not polarized. How-

ever, the spin distributions acquire a partial polarization

for those electrons that flow into the first ferromagnetic

layer with pinned magnetization in the  direction. These

electrons continue their way through the spacer layer and

eventually arrive at the second free ferromagnetic layer

(that will be considered as a magnetic monodomain).

Upon their arrival, the spin-polarized current interacts

with the monodomain, exerting a torque on the magneti-

zation, transferring an angular momentum (Spin-Transfer

Torque), finally influencing the monodomain orientation.

The dimensionless Landau-Lifshitz (LL) equation [27,

28] is used to study the magnetization dynamics of this

free layer, and the spin-transfer torque associated with the

polarized current of spin in the manner proposed by

Slonczewski [5, 6] is considered. This equation is given

by

, (1)

where the magnetization and effective field are in units of

the saturation magnetization Ms, (m = M/Ms and heff =

Heff/Ms), and time in units of (| |Ms)
1, that is, the dimen-

sionless time  = | |Mst is defined. Here the saturation

magnetization leads to |m| = 1. The factor  is the

damping coefficient, and | | is the gyromagnetic factor

associated with the electron spin and its numerical value

is approximately given by | | ×5 m/As. The last

term in equation (1) corresponds to the spin-torque with

, where Je represents the applied current

density taken as positive when the electrons flow from the

free to the fixed layer [14], Jp is a parameter with dimen-

sions of current density given by JP = 0Ms
2|e|l/  where

|e| is the absolute value of the charge of the electron, l is

the thickness of the free layer, which has been taken with

a value of 3 nm and,  is the reduced Planck constant.

The spin-transfer efficiency is a function of the dot product

 and it is given by 

with f(P) = (1+P)3/4P3/2, where P represents the degree of

polarization of the electrons coming from the fixed layer

[14], in our case .

In this scenario, an external magnetic field and a free

layer with uniaxial anisotropy are considered. The effective

magnetic field heff is written as heff = hE  (mx  +

my ), where hE = HE/Ms = h0  is the external field and 
= HK/Ms is the measure of the anisotropy, where HK =

2K0/Ms with K0 is the anisotropy constant. In this case,

the easy axis is parallel to the z-direction. Furthermore, it

is assumed the normalized current as Je/JP = I0 + I1
sin(c), where I0, I1, and c are dimensionless constants

expressed as I0 = /JP, I1 = /JP, and c = wc/| |Ms;

being , and  the amplitudes of the constant and time-

dependent current densities, respectively and c the

normalized frequency. The dynamical behaviors of a spin

valve oscillator, considering the free layer of Nickel

material are characterized. Typical experimental values

for this material with their corresponding time scale are

shown in Table 1.

3. Simulations

This section is divided into two parts. The first sub-

section introduces the characterization techniques employed

to analyze the dynamical behavior of the system. The

second subsection presents the results and their discussion.

3.1. Techniques of dynamical characterization

The dynamic system described by Eq. (1) under the

action of a time-dependent current of the form defined in

this work cannot be solved analytically. This issue is due

to non-linear and temporal dependencies. The system of

differential equations associated with Eq. (1) is solved

numerically using the fourth-order Runge-Kutta method

with a time step d = 0.1 and precision of 108 for the

magnetic moment. The dynamic system employing the

Lyapunov exponents (LEs) is characterized. This technique

consists of quantifying the divergence between two

trajectories with initial conditions that are very close to

each other. Accordingly, i-th Lyapunov exponent i, of a

dynamic system of effective dimension N described by a

set of equations of the form, dX i/dt = Fi(X, t), is given by:

, (2)
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Table 1. Simulation parameters for the Ni-based alloys.

Ms (A/m) P K0 (J/m
3) ||Ms (ps) JP (A/m2 )

 4.80 × 105  0.11 5.3 × 103  9.4 1.32 × 1012
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where  is the distance between the trajectories of the

i-th component of the vector field in time. The time

 in the previous expression must be interpreted as

the necessary  time, sufficiently large, such that the

separation of the trajectories reaches its saturation value,

which will be limited by the diameter of the attractor.

These exponents can be ordered, from the largest to the

smallest: . The first exponent, 1, is

known as the largest Lyapunov exponent (LLE). By

exploring the dependence of the LLE with the different

parameters of the system, regions can be identified in the

parameter space where the dynamics are chaotic (positive

LLE), or where non-chaotic dynamics are present (zero or

negative LLE) [21, 29]. A classification of the dynamic

behaviors of a time-continuous system regarding the

spectrum of Lyapunov indicates that to observe a chaotic

behavior it is necessary that the system has, at least,

dimension-3. While in systems of dimension-1, there are

fixed points; in systems of dimension-2, one can find

periodic attractors type limit cycle, in addition to fixed

points. The system has dimension-3, so it is possible to

find interesting dynamic behaviors such as quasi-periodic

or chaotic behaviors. The calculation of the Lyapunov

exponents is one of the most used techniques as an

indicator of chaos. In this work, these exponents are

relevant to our analysis because they allow visualizing

and delimit the different dynamic regions where the

system presents chaotic and regular behavior when the

different parameters of the system are varied.

In addition to this method, other indicators of quanti-

fying the dynamical behaviors of a system, such as the

computation of bifurcation diagrams, Fourier spectrum,

phase portraits, and time series, are used. Bifurcation

diagrams have been previously used to quantify the

nonperiodic behavior of a dynamical system [24, 25]. A

bifurcation diagram enables one to elucidate the transition

dynamics that exhibit the system when a control para-

meter is varied. The bifurcation diagram is obtained by

repeatedly taking the maximum value of the time series of

the my component, calculated for a time span of τ = 5000

after removing the transient portion of the motion.

3.2. Results

To elucidate the dynamical transitions that exhibit a

spin valve oscillator, the focus is on three parameters: the

time-dependent current amplitude I1, the normalized fre-

quency c, and the constant magnetic field h0. The con-

stant current amplitude at I0 = 0.10 and the dissipation

parameter at  = 0.02 are fixed. The regions in the

parameter space where chaotic and regular behaviors are

found are delimited. Numerical simulations are performed

with the parameters presented in Table 1. 

Figure 1 shows the Lyapunov exponents and the bifur-

cation diagram as a function of I1. In this figure, the LLE,

max, corresponds to the solid line, the other three expo-

nents 2, 3 and 4, corresponding to dotted, dot-dashed

and dashed lines, respectively. The fixed values of the

constant magnetic field and normalized frequency are h0

= 0.06 and c = 0.30, respectively. It is observed that

when the current I1 takes values   between 0 < I1 < 1.7, the

LLE is positive, and the system exhibits periodic states.

When the current is in the range, 1.7 < I1 < 5.6, the

system presents multiple transitions between chaotic and

regular states. In this zone, it can be observed that the

boundaries that separate regions from chaotic and regular

states can be very complicated. For values higher than I1
= 5.6 and less than 7.0, the LLE becomes zero, the

magnetization of the free layer presents a purely regular

behavior. Additionally, with the comparison of the LLE

and the bifurcation diagram, one can determine precisely

the segments where the regular phases correspond to

periodic or quasi-periodic behaviors. For instance, in

ranges 0 < I1 < 1.7 and I1 > 5.6, the dynamical behaviors

are periodic as indicate the LLE. In the range, 2.43 < I1 <

X

i

 

1 2  N  

Fig. 1. (Color online) Lyapunov spectrum and bifurcation dia-

gram of the magnetization vector as a function of the current

amplitude I1. Fixed parameters: h0 = 0.06 and c = 0.30. The

physical values of the parameters are HE = 0.036 T, c = 31.8

GHz, and  = 1.32 × 1011 A/m2.Je
0
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3.64, the LLE is null, quasi-periodic oscillations can be

identified, except for a region, (2.65, 2.94), where the

dynamic is periodic. It is remarked that different dynamical

behaviors in spin-valve systems have been reported such

as chaotic dynamics, periodic and quasiperiodic dynamics

[17-19, 26, 30]. It is essential to have a sound under-

standing of the effect of the time-dependent currents on

the dynamic states since higher currents can lead to

undesirable consequences such as excessive heating in the

system, and therefore modify the dynamic states.

Figure 2 shows the phase portrait, the time series of my,

and its corresponding Fourier spectrum, for four particular

cases of current amplitude I1, which are marked in Fig. 1

with a green line, namely 0.20, 2.00, 3.50, and 6.80.

Figure (a), shows a purely periodic state for small

values of the current, I1 = 0.20, with LLE null. The

Fourier spectrum is made in logarithmic scale, whereby it

is observed one principal characteristic frequency. Figure

(b) shows the results obtained for a value of current of I1
= 2.00 with a positive LLE. The system is found in a

Fig. 2. (Color online) (1) Phase portrait, (2) time series for my and (3) Fourier spectrum for four values of, I1, (a) I1 = 0.20, (b) I1 =

2.00, (c) I1 = 3.50 and (d) I1 = 6.80 respectively. Fixed parameters are the same as those in Fig. 1. The physical values of the param-

eters are (a) = 2.64 × 1011 A/m2, (b)  = 2.64 × 1012 A/m2, (c) = 4.55 × 1012 A/m2, and (d)  = 8.98 × 1012 A/m2.Je
1

Je
1

Je
1

Je
1
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chaotic state. In Fig. (b1) it can be seen how the move-

ment of the magnetization vector m, associated with the

free layer, fills a large zone of the phase space. Figure

(b2), shows the temporal evolution of the my component

describing an aperiodic movement, and the Fourier spec-

trum shows a continuum set of characteristic frequencies,

which corroborate the behavior observed in the phase

diagram. Figures (c) and (d) show results for the bifur-

cation diagram region where the LLE is null; the values

of currents are I1 = 3.50 and I1 = 6.80, respectively. In

these cases, the system exhibits nonchaotic states, which

are regular but different from each other. Figure (c) corre-

sponds to a regular state; but in this case, the behavior is a

quasiperiodic state. In fact, from the Fourier spectra, the

presence of multiple modes can be observed. In Fig. (d),

the magnetization m describes a multi-periodic behavior

since the Fourier spectra show a discrete rational number

of frequencies.

Figure 3 shows the LLE as a function of the current I1
for different values of the magnetic field h0, represented

by solid, dotted, dashed, and dot-dashed lines. The fre-

quency value is fixed as was done in Fig. 1. The effects

of the constant magnetic field on the chaotic behavior

start are analyzed. Results show that for all the magnetic

field values to lower values of the current I1, the

dynamical behavior system is always a regular state.

Furthermore, the chaotic state starts first at lower values

of the I1 for lower values of the magnetic field, h0 = 0.10.

When the field is increased, the chaotic behavior appears

at higher current. The inset shows the values of the

constant magnetic field and a time-dependent current

amplitude when the chaotic behavior starts. For higher

magnetic field, the current necessary for chaos to appear

will be higher. The frequency effect on the dynamical

behavior of the system is shown in the following figure.

Figure 4 shows the LLE as a function of the current I1
for different frequency values c represented by solid,

dotted, dashed, and dot-dashed lines. The constant mag-

netic field value is fixed as was done in Fig. 1. In contrast

to the previous case; the chaotic state start, as a function

of the time-dependent current amplitude, follows a non-

uniform behavior when the frequency values are increased.

From the Lyapunov exponents, one can observe that there

are multiple transitions among chaotic and regular states.

In all cases, to high and low currents and frequencies

values, the dynamical behaviors of the system are purely

regular. Moreover, the system exhibits different types of

regular states, being the cyclic states with different perio-

dicities.

4. Conclusions

In this article, the dynamic behavior of a spin valve

oscillator in the presence of a constant magnetic field and

a current with two components, a constant component,

and a time-dependent component is described numeri-

cally. The temporal evolution of the magnetization is

modeled by the Landau-Lifshitz-Slonczewski equation,

which describes with accuracy the dynamic behavior of a

spin valve oscillator. Efforts have been concentrated on

understanding the impact of the constant magnetic field,

the current amplitude, and the frequency on the dynamical

behaviors of the system. The Lyapunov exponents, bifur-

cation diagrams, phase portraits, time series, and Fourier

Fig. 3. (Color online) Lyapunov spectrum as a function of the

current amplitude I1 for four values of the magnetic field

h0 = 0.10, h0 = 0.30, h0 = 0.50 and h0 = 0.70. Fixed parameters

are the same as those in Fig. 1. The physical values of the

parameters are, HE = 0.180T, HE = 0.301 T, HE = 0.036 T, and

HE = 0.422 T.

Fig. 4. (Color online) Lyapunov spectrum for four frequency

values c = 0.10, c = 0.20, c = 0.30 and c = 0.35, as a

function of the I1 current amplitude. Fixed parameters are the

same as those in Fig. 1. The physical values of the parameters

are c = 10.6 GHz, c = 21.2 GHz, c = 31.8 GHz, and

c = 37.1 GHz.
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power spectra were applied to characterize dynamics of

the system. Simulations results show that the magneti-

zation of the free layer follows a dynamic behavior which

presents multiple transitions between chaotic and regular

states. Periodic behavior of the system was registered

when the time-dependent current amplitude is low, and

hence as it increases, the system exhibits transitions to

chaotic states; while for high values   of current, the system

returns to regular states. 

Furthermore, results demonstrate that the chaos onset

strongly depends on the control parameters leading us to

conclude that for higher values of the constant magnetic

field, the higher the amplitudes of the time-dependent

currents will be, which are required for the chaos

inception. However, this same effect is not observed when

frequency increases; at a higher frequency the current

amplitudes that are required do not follow a monotonous

pattern. Finally, it is highlighted that the chosen para-

meters are within the experimental range therefore, it is

believed that these states could be detected experimentally.
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