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Recently, many design problems in the field of electrical engineering tend to be more complex, which are

characterized by large scale in size, strong nonlinearity for performance analysis, and multi-dimensional design

parameters. Therefore, it is not easy to seek for optimum effectively by traditional optimization algorithms. In

order to solve optimal design of complex practical problems, in this paper, a novel hybrid optimization algo-

rithm based on the differential evolution algorithm and the black hole theory is proposed and investigated. The

differential evolution (DE) algorithm owns good diversity and flexibility, while the black-hole based optimiza-

tion algorithm (BHBO) possesses faster convergence. In addition, these two algorithms have simple structures.

The proposed algorithm with better merits combination may guarantee better convergence and stronger

robustness than its independent counterparts of DE and BHBO. The searching performance is deeply investi-

gated through numerical experiments on benchmark functions and practical electromagnetic applications. 
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1. Introduction

The advanced optimization algorithm is an essential

prerequisite for manufacturing electromagnetic products

with better performance and lower cost. The meta-heuristic

optimization algorithms such as differential evolution [1]

and particle swarm optimization algorithms [2] have been

proved to be effective in solving low-dimensional pro-

blems [3]. However, as the number of design variables

becomes bigger or the complexity of performance analysis

increases, the aforementioned algorithms may fall into

local optimum easily and require more expensive search-

ing cost. Furthermore, due to implicit relationship between

objective functions and design variables in practical pro-

blems, optimal design problems tend to be more complex,

strong nonlinear, and multimodal. It is significative to

develop simple and effective algorithm solving complex

high dimensional engineering problems.

The black-hole based optimization (BHBO) algorithm

is parameter free and only has two mathematic equations

for star updating and sucking [4]. Due to its simple

structure, it is easy to use and has faster convergence.

Until now, for the BHBO algorithm, there is no relevant

research dealing with high dimensional problems. Among

existing evolutionary algorithms, the differential evolution

(DE) algorithm with fewer control parameters has been

proved to be simple, diverse and flexible [5]. The DE

normally gets high accuracy when dealing with low

dimensional problems.

Based on the above background, the main contribution

of this paper is to introduce a new meta-heuristic techni-

que based on black hole and differential evolution. The

suggested algorithm is capable of seeking optimum of

complex electromagnetic problems. The combined hybrid

algorithm is predicted to own better performance than

either of independent ones.

2. Hybrid Optimization Algorithm of Black 
Hole and Differential Evolution (BHDE)

In space, the stars or other objects will be absorbed by

the black hole when distance between object and black

hole is less than the Schwarzschild radius. Based on this

phenomenon, the BHBO algorithm is developed [4]. The
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differential evolution algorithm is one of population-based

algorithms [1]. The DE algorithm has many variants to

further improve its searching performance [6-8]. In this

paper, the standard mutation operator DE/rand/1/bin is

used.

To extend application of BHBO and DE in solving

multi-dimensional problems, the merit of black hole is

introduced into the standard differential evolution algorithm.

Furthermore, from current generation to next generation,

the target vector is moved based on the current black

hole. Since the black hole is the best design at current

iteration, so it can speed up the convergence. For a design

problem with objectives to be minimized subject to some

constraint conditions, the detailed BHDE algorithm is

explained in the following contents.

Step 1: Initialization

To guarantee randomness of initial vectors, randomly

generate Np target vectors xi
g' in a normalized design

space. Based on upper limit xU and lower limit xL of each

variable, the target vector xi
g in physical design space is

transformed by

(1)

Calculate objective values and select target vector with

the best fitness value as the initial black hole xBH
0.

Set numbers of maximum generation and maximum

unchanged black holes as gmax and ucmax respectively.

Step 2: Mutation and crossover

Generate the mutation vector vi
g+1 by 

 (2)

where F is a weight coefficient; r1, r2, and r3 are

subscripts of vectors which are randomly selected from

{1, 2, …, Np}. Normally, the weight coefficient F belongs

to the range of [0, 2]. It is used to adjust the proportion of

differential vector in the mutation vector. In this paper, the

weight coefficient F is set 0.5.

Generate a group of trial vector ui
g+1 by

 (3)

where Cr and randj( ) are crossover constant and jth

dimension random number among [0,1], respectively; the

dimension index jrand is randomly selected from 1 to n

(number of design variables).

Step 3: Movement

The target vectors move as Eq. (4) to generate another

group of trial vector bi
g+1.

(4)

where xi
g
Rn is ith star at gth generation.

Step 4: Survival criterion

At (g+1)th generation, trial vector ui
g+1 or bi

g+1, which

gives better objective value will be selected as target

vectors xi
g+1 surviving for next generation. Check the

objective value of each star; if a star owns a better objec-

tive value than the current black hole xBH
g, it will become

the new black hole xBH
g+1 for next generation.

To deal with constraint functions, there are some criter-

ions as follows:

-If both trial vectors are feasible, select the survivor as:

(5)

- If one of them is feasible, select the feasible one;

- If both are infeasible, select that with a lower sum-

mation of constraint violations.

Step 5: Vector correction

If (6a) is satisfied or the target vector is out of design

space, the target vector xi
g+1 is sucked by the black hole.

In order to keep a constant number of target vectors Np,

for all the sucked vectors, the corresponding new vectors

will be generated randomly.

(6a)

 (6b)

Step 6: Termination criterion

If the iteration number reaches a predefined maximum

gmax or the current black hole is not changed continuously

for a user-defined maximum iterations ucmax, then terminate

BHDE. Otherwise go back to step 2.

Frankly speaking, the suggested BHDE may not be

superior to all meta-heuristic optimization algorithms.

The proposed BHDE algorithm at least may be better

than its single counterparts for solving high-dimensional

problems.

3. Numerical Applications of 
Proposed Algorithm

In this section, the performance of the proposed BHDE

algorithm is investigated by several applications. Without

loss of generality, for each problem, the optimization

program carries out 20 independent runs.
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3.1. Benchmark Analytic Functions

Four benchmark test functions with a zero optimal

objective value in (7) are selected to investigate proposed

BHDE algorithm. Np is set three times of dimensions.

(7a)

(7b)

(7c)

 (7d)

For different dimensions, test results of three algorithms

(BHBO, DE, and BHDE) are listed in Table 1. 

Among 20 independent runs, the mean value μf and the

standard deviation σf of objective function are selected as

performance indices. From comparisons, the following

investigations can be obtained.

(1) It is obvious that the searching ability of each

algorithm becomes worse as the number of dimension n

increases. Moreover, BHBO and DE fails to find true

optimum of Rastrigin function under n = 60 and 100. By

contrast, the BHDE algorithm can successfully give a

better solution, which shows stronger robustness than its

counterparts. 

(2) Even for the low dimensional case (n = 30), BHBO

fails to find optimal solution of all test functions except

Griewank. For low-dimensional Ackley and Griewank,

the DE shows outstanding performance, while the BHDE

has an advantage over the other two methods for high

dimensional case. 

Therefore, the robustness and effectiveness of combined

BHDE is better than its single counterparts especially for

high dimensional problems.

3.2 Brushless DC Wheel Motor Problem

For the application of a brushless DC wheel motor

design [9], the target is to maximize motor efficiency η

subject to the following constraints:

(8)

where Dint and Dext are inner and outer diameters of

motor, discr (Ds, δ, Bd, Be) is a determinant to calculate

slot height. Imax is peak phase current. Ta is magnet temper-

ature. Mtot is the total mass of active parts including

magnets, stator teeth, copper, rotor and stator yoke. Table

2 lists design variables x = (Ds, Be, δ, Bd, Bcs) as stator

diameter (Ds), maximum magnetic induction in air gap

(Be), current density in conductors (δ), average magnetic

induction in teeth (Bd) and stator back iron (Bcs). Other

details are described in [9].
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Table 1. Result comparisons of benchmark functions.

Function Method
n=30 n=60 n=100

μf σf μf σf μf σf

Ackley

BHBO 3.729 0.796 4.407 0.827 5.060 1.164

DE 2.77E-11 1.63E-11 5.21E-06 1.26E-06 1.40E-03 3.00E-03

BHDE 2.12E-09 1.71E-09 7.63E-10 4.32E-10 2.97E-09 1.38E-09

Griewank

Method μf σf μf σf μf σf

BHBO 2.97E-13 5.21E-13 9.67E-12 9.91E-12 1.09E-10 8.04E-11

DE 4.79E-23 3.15E-23 6.68E-12 3.84E-12 7.89E-07 3.10E-07

BHDE 2.72E-16 3.70E-16 5.59E-14 7.28E-14 1.45E-11 1.18E-11

Rastrigin

Method μf σf μf σf μf σf

BHBO 62.031 31.39 179.355 58.34 340.409 128.17

DE 155.987 15.83 442.047 14.96 832.176 21.89

BHDE 4.55E-08 1.85E-07 7.95E-09 2.45E-08 9.30E-10 3.74E-09

Schwefel

Method μf σf μf σf μf σf

BHBO 2.499 1.306 14.699 40.712 10.200 3.033

DE 2.90E-10 1.71E-10 9.73E-05 2.65E-05 0.029 9.3E-03

BHDE 9.34E-11 8.35E-11 1.90E-11 1.34E-11 9.01E-12 5.45E-12
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Parameters of optimizer are set as Np = 55, gmax = 300,

and ucmax = 50. The optimum searching by BHDE algorithm

is compared with other two algorithms in Table 3.

In this paper, the analytic function model of brushless

DC wheel motor is used for solving objective function

[9]. Taking benchmark solution in [9] as a reference, the

efficiency of design found by the DE is much close to

standard one. However, by comparing standard deviation

of 20 independent runs, the BHDE algorithm shows a

better stability. Figure 1 shows convergence process of

three algorithms for the best solution. After 20 indepen-

dent runs searching for the optimal under different condi-

tions, average function calls of BHDE, BHBO and DE

are 10445, 14575 and 10340, respectively. Taking both

searching accuracy and computing cost into account, the

BHDE owns better performance than single BHBO and

DE.

3.3. Superconducting Magnetic Energy Storage Sys-

tem

The superconducting magnetic energy storage system

(SMES) is the second engineering application [10]. Design

targets are to get stored energy E0 close to180 MJ and

keep a minimum stray field Bstray. The optimization model

is defined as:

(9)

where the normal stray field Bnorm is 200 µT. The first two

constraints guarantee the quenching condition of super-

conductor. The last one avoids two coils being overlapp-

ed. More details about symbols definition and structure

can be found in [10].

Since the SMES is a linear problem, the performance

analysis is carried out by the semi-analytic method [11].

For the non-linear engineering problem, the proposed

optimization method can be combined with the design of

experiment method. Taking optimizer parameters of Np =

80, gmax = 500, and ucmax = 50, optimization results are

compared in Table 4. Obviously BHDE algorithm can

find an optimal solution close to standard one while other

two single algorithms fail to find optimal designs. Besides,

through comparison of mean objection value, the BHDE

shows stronger robustness. For 20 independent runs under

same convergent condition, by comparing mean function

values and mean number of function calls, the BHDE

algorithm is proved to be better than either of other two
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Table 2. Design space of brushless DC wheel motor.

Ds (mm) Be (T) δ (A/mm2) Bd (T) Bcs (T)

Min 150 0.5 2.0 0.9 0.6

Max 330 0.76 5.0 1.8 1.6

Table 3. Result comparisons of brushless DC wheel motor.

Items Standard BH-DE BHBO DE

Ds (mm) 201.2 201.0 204.8 203.7

Be (T) 0.648 0.654 0.646 0.650

δ (A/mm2) 2.044 2.067 2.048 2.037

Bd (T) 1.8 1.8 1.7 1.7

Bcs (T) 0.896 0.928 1.151 0.979

Dint (mm) 76 78 86 77

Dext (mm) 239.0 239.1 242.9 242

Imax (mm) 125 130 125 128

Mtot (kg) 15 15 15 15

Ta (°С) 95.37 95.43 94.36 94.36

Discr 0.024 0.024 0.021 0.018

η (%) 95.32 95.30 95.29 95.33

Std. dev - 1.41E-4 3.03E-4 1.07E-3

Fig. 1. (Color online) Relation between iteration number and

objective function values.

Table 4. Result comparisons of different algorithms for SMES.

Items Standard BHDE BHBO DE

R1 (m) 1.5703 1.5710 1.4900 1.7044

R2 (m) 2.0999 2.1012 2.1315 2.2521

h1/2 (m) 0.7846 0.7845 0.7172 0.8191

h2/2 (m) 1.4184 1.4179 1.3186 1.2886

d1 (m) 0.5943 0.5943 0.6138 0.6245

d2 (m) 0.2562 0.2562 0.1960 0.1797

J1 (A/mm2) 17.3367 17.3369 15.3367 14.0688

J2 (A/mm2) -12.5738 -12.5734 -12.9892 -17.9988

f (x) 5.5203E-3 5.4741E-3 0.332329 0.556138

Bstray
2 (T) 2.1913E-10 2.0921E-10 4.2468E-09 1.6424E-08

Energy (MJ) 179.9924 180.0439 139.2914 153.8046

Mean f (x) 0.0055 0.0075 0.7074 0.6817

Fun. calls - 27,330 36,480 32,310
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single algorithms.

3.4. Cogging Torque Optimization of a Permanent

Magnet Synchronous Machine

For further performance investigation, a permanent

magnet synchronous machine (PMSM) is selected for

cogging torque minimization [12]. The cogging torque is

caused by the interactions among permanent magnet,

stator, and rotor at no-load condition. Without consi-

deration of skewed slots in the surface mounted PMSM,

the analytic expression of the cogging torque can be

summarised as follows:

(10)

where LFe is axial length of iron core; R1 and R2 are outer

radius of rotor and inner radius of stator, respectively; z is

number of slots; α is the intersection angle between

central lines of permanent magnet and slots; αp is the

pole-arc coefficient; and Gn is coefficient of Fourier ex-

pansion.

From Eq. (10), it can be seen that the cogging torque is

related with parameters of permanent magnet and armature,

and different combination of slots and poles. In this paper,

design variables are parameters of stator slot (Hs0, Hs1,

Hs2, Bs0, Bs1, and Bs2), air-gap length δ, pole-arc

coefficient αp, and permanent magnet thickness hM. The

corresponding design spaces are shown in Table 5. The

parameters required by optimizer are Np = 95, gmax =

1000, and, ucmax = 120. 

The optimum shape of stator slot type searching by the

BHDE algorithm is compared with initial shape in Fig. 2

and Fig. 3. The design parameters [δ, αp, hM] are optimized

from [2.0 mm, 0.76, 6 mm] to [1.5 mm, 0.75, 7.8 mm],

respectively. Other parameters are listed in Table 6.

From Fig. 4, it is obvious that the magnitude of cogging

torque is effectively reduced from 379.5 mNm to 293.4

mNm, which decreases almost 23 %. Meanwhile, for

distribution of the no-load air-gap magnetic flux density

in Fig. 5, the amplitude of optimal design is slightly

higher than the initial value, while shapes of waveform

before and after optimization are almost same. Figure 6

shows harmonic components of the optimized flux density

waveform. The corresponding harmonic distortion rate is

22.51 % while the initial design is 21.39 %. The proposed

BHDE can find an optimal design, which can implement
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Table 5. Design space of electrical machine.

Hs0 Hs1 Hs2 Bs0 Bs1 Bs2 δ αp hM

Unit mm mm mm mm mm mm mm - mm

Min 0 0.5 18.5 1 5 10 0.5 0.65 4

Max 1 1.5 23.5 3 8 14 2 0.9 8

Table 6. Design solutions of electric machine before and after optimization.

Hs0 Hs1 Hs2 Bs0 Bs1 Bs2 δ αp hM

Unit mm mm mm mm mm mm mm - mm

Initial 0.5 1 21.5 2 6.28 11.94 2 0.76 6

Optimal 0.8 0.7 22.7 1.4 7.39 11.71 1.5 0.75 7.8

Fig. 2. (Color online) Comparision of stator slot types.

Fig. 3. (Color online) Structure comparison of electric

machine before and after optimization.
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effective control of cogging torque and not deteriorate

other performances.

4. Conclusion

From the viewpoint of solving high dimensional pro-

blems in the field of electrical engineering, this paper

presents a hybrid black-hole-based differential evolution

(BHDE) algorithm. From several numerical experiments,

the BHDE shows stronger robustness and better searching

ability than independent black-hole-based algorithm and

differential evolution algorithm. The BHDE with simple

structure and fewer control parameters, which is easy for

popularization and can be integrated with surrogate models.

There is no free lunch in optimization. The BHDE may

not be superior to any other optimizers. However, the

BHDE laying stress on advantages combination is better

than its single counterparts. In further research, the

performance investigation of BHDE will be compared

with other optimizers through applications on much higher-

dimensional electromagnetic problems.
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