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Radiomics is a field for quantitative image assessment and research using a variety of sophisticated and com-

plex algorithms by extracting a significant and numerous amount of specific functional elements (called texture

feature) from medical images. It is mainly used in oncology and can provide a variety of capabilities in a non-

invasive way, such as explaining the tumor phenotype, monitoring the response to treatment, comparing with

normal tissue, diagnosing the prognosis of the patient and predicting survival. In this study, we will introduce of

the workflow of radiomics and discuss the types of texture features, application of clinical cases, and the pros-

pects of radiomics.
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1. Introduction

Tumors that are biologically complex and have various

growth specificities heterogeneous genetic phenotypes

between different tumors and even within same type of

tumors [1]. In general, cancer research has been carried

out through research and diagnosis such as histopatho-

logical cell type analysis from a large number of patients

and clinical or genetic data analysis based on long-periods

collected data [2-4].

However, the study and analysis of tumors through

these method is characterized by the growth of tumor cell

mutations during tumor evolution, the lack of understand-

ing of tumor heterogeneity and personal environment in

each patient, and the dependence of subjective opinion on

tissue diagnosis, clearly. Therefore, the possibility of objec-

tive and quantitative analysis is necessary. In addition,

with the development of computer image processing and

the improvement of the quality of the quality of medical

images, the development of protocols for the image ac-

quisition process has increased the possibility and expec-

tation for image research. In modern social medical fields,

medical images, such as computed tomography (CT),

positron emission tomography (PET), or magnetic reson-

ance (MR, mainly used T1, T2 and fmri) images are

important factors in the stage of diagnosis, prevention,

and treatment of tumors [5-7]. 

Quantitative features extraction and measurement using

medical images can replace tissue biopsies, observations

through surgical incisions, and minimizes the genetic

heterogeneity of structures, non-invasively [8, 9]. Also,

the extraction of radiomics features can reveal many of

the clinical information hidden in layers of images that

were difficult to identify [10, 11]. Research on radiomics

can provide tumor characteristics, heterogeneous charac-
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teristics of each treatment method, patient prognosis, and

assessment of factors affecting survival [10]. As such,

research using medical images as biomarkers have been

developed into a new field of study based on the corre-

lation of image parameters and patient information [12].

In this study, we introduce general radiomics methods,

clinical cases applicable, and the future of radiomics. 

2. Material and Methods

In general, radiomics are non-invasive methods for

performing surgical planning, patient survival analysis,

and survival prediction extracting from medical images

by using specific programs or algorithms to extract quan-

titative features (called texture features) in the tumor and

analyze them together with the patient's clinical or genetic

information to diagnose, detect potential phenotypes, and

select surgical methods. 

Radiomics data can be used to make predictions of

clinical models, and this series of processes requires

collaborative efforts by radiologists, computer scientists,

oncologists, and statistical analysts. The necessary each

steps for radiomics analysis are as follows.

2.1. Procedure of Radiomics

2.1.1. Image acquisition

The first step of radiomics is to collect appropriate

medical images for the target tumor. The best medical

images for the target tumors should be selected and a

wide range of parameters (spatial resolution of images,

administration and concentration of contrast media, slice

thickness, size of matrix or voxel etc. for CT, sequence

type, echo time, repetition time, type of image, number of

excitation or relaxation, and other sequence of parameters

for MRI, type of used nuclide, nuclide activity, standard

uptake value, during time after injection, etc. for PET)

applied to the acquisition of the image. Each type of

images has a different reconstruction algorithm and para-

meters. Thus users are defined that can adjust them

appropriately because there may be several variations in

each institution or in individual patients [13]. As a result,

if images acquired using different acquisition protocols,

even in the same institution, or with different scanners in

different patient populations, even with the same disease,

affect accurate results by reflecting different biological

tissue characteristics of the image functions. Therefore,

since it is possible to display different values when

extracting radiomics features by performing repeated

measurements under the same conditions, it may be better

to exclude factors affected by the image collection pro-

cess and reconstruction parameters from the beginning.

2.1.2. Segmentation

Segmentation is an important step of the radiomics

because feature datas are extracted from the segmented

volumes. Since many tumors have unclear borders, review-

ing them after automatic segmentation process is essential

and need to sophisticated segmentation in case of manual

process [14]. The initial step for segmentation is to select

a Region of Interest (ROI), including the entire tumor or

sub-regions affected by tumor metastasis. In general, the

selection of the region of interest is not a problem without

a difficulty in solid tumors, but in the case of adeno-

carcinoma or squamous cell carcinoma, it is difficult to

establish the ROI because the boundary is not clear [15].

There are several things to consider depending on the

type of tumor and the site of primary. For example, in the

lungs, attention should be paid to the entire lung area and

each segmented lobe area. In the case of head and neck

cancer, the tumor is small and has spread to many places.

Fig. 1. (Color online) Workflow of radiomics in oncology. After select image types such as PET, CT, PET/CT, and MRI etc. seg-

mentation is performed after ROI selection for tumor segmentation. Radiomics features can be extracted within defined tumor con-

tours on images. Statistical analysis, such as correlation analysis between extracted radiomics features and clinical or genomic data,

or morphological analysis, such as morphological analysis and model-based analysis, are performed and select specific features.

After that, the clinical images can be analyzed for tumor-influencing factors, survival analysis and prediction etc. depending on the

results that can appear between radiomics features. 
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Therefore, the error caused by setting ROI of normal tissue

should be minimized. In addition, segmentation after

manual ROI selection takes a lot of time, it is recommended

to use program coding or an automation method through

an application program. In addition, segmentation after

manual ROI selection takes a lot of time, it is recommend-

ed to use program coding or an automation method through

an application program. Using houns-field Unit threshold

(cut-off) pixel or voxel value and spatial resolution for

CT images, selecting images according to the necessary

lesion such as T1, T2, fmri for MRI images, in case of

PET images, using SUV cut-off threshold value is one of

the general methods.

2.1.3. Feature Extraction and Selection

After segmentation, various radiomics features can be

extracted through the separated region. Quantitative and

objective numerical properties clearly demonstrate the use

and benefits of radiomics in the field of oncology. Patterns

of tumors that are difficult to observe by human can be

found through feature values, and are constantly being

improved and developed [16]. After extracting a large

number of radiomics features, the available features should

be selected. The complete implementation of the research

using radiomics features is still ongoing, but is known to

be related to cancer detection and diagnosis, patient pro-

gnosis assessment and appropriate surgical methods [16,

17]. In general, it is possible to select from the correlation

with clinical data or genetic data of the patient, and stati-

stical methods such as commonly use methods are least

absolute shrinkage and selection operator, principle com-

ponent analysis, and random forest.

2.1.4. Statistical Analysis

The ultimate goal of radiomics is to determine the

patient's clinical analysis (operate method, dosage, fre-

quency of operation, etc.) and survival (alive period and

survival prediction) through objective and quantitative

values. It is important to understand the correlation

between clinical data (living environment, menstruation,

tumor progression, location of primary tumor, etc.) and

radimoics features extracted from medical images and

genetic information data, and to derive appropriate research

results. 

Spearman's correlation analysis, Pearson correlation

analysis, etc. are statistical analysis for identifying corre-

lations between data. When two or more images are mix-

ed, intra-class correlation coefficient (ICC) is used. Kaplan-

Meier survival analysis can be used to track patient

survival, and then regression analysis can be performed.

In addition, multivariate analysis may be used to make

predictions of patient survival using feature and clinical or

genetic data. Since the result obtained through statistical

analysis is expressed through a numerous of numbers, it

is mainly represented by a graph such as a heat-map for

comparison and analysis of the prediction result.

3. Types of Radiomics Feature

The radimoics features that can be derived from medical

images are infinite. The type of features can be classified

into four categories according to the meaning of each

values in images: (1) morphological, (2) statistical, (3)

regional, and (4) skeleton features [18].

3.1. Morphological

Morphological features provide physical information

such as tumor shape and volume, and can be divided into

higher-order statistical (texture) features based on first-

order statistical (histogram) features. For example, features

such as spherical imbalance, globular and discrete small

size of tumors can be quantified through morphological

Fig. 2. (Color online) An example of manual segmentation of HNSCC (Head and Neck Squamous Cell Carcinoma) of positron

emission tomography and automatic segmentation of lung cancer of computed tomography images. Although manual segmentation

is true, but (A) image do not show precise borders for tumor regions compared to (B) images.
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features [1]. The surface region of tumors can be measur-

ed by triangulation, which completely covers the surface

of the tumor, and Gaussian-Laplacian spatial filtering

improves the positional characteristics around the tumor

and provide fine marginal characteristics between the

surrounding normal and tumor tissues [19].

3.2. Statistical

Based on the histogram, the pixels or voxels in the

tumors ROI regions that appear along the reference axis

have their respective attenuation values   along the other

axis.

It can be divided into first-order statistical features

representing a simple plot of the frequency of pixels and

higher-order texture features representing individual spatial

image information for each voxels. First-order statistical

features (mean, median, contrast, energy, entropy, uniformity,

etc.) are most widely used in traditional radiomics and

have the advantage of quantifying subtle changes in tumor

tissue for each voxels but it can lead to loss of spatial

information. GLCM(Gray level Co-occurrence Matrix) of

higher-order texture features consists of number, distance,

and angle of gray level combinations in images, and is

considered of the arrangements pairs of voxels to calculate

textures. It can extract features such as energy, entropy,

and contrast.

where I(p, q) corresponds to voxel(p, q) in an image(I) of

size N*M. The vector  covers the 4 direc-

tions in 2D or 13 directions in 3D space. The corresponds

to the number of all voxel pairs in region of interest

(ROI) [18]. GLRLM (The Grey-Level run Length Matrix)

shows continuous voxel specificity of gray levels at all

angles, and features such as long-term emphasis, short-

term emphasis, non-uniformity of gray levels, and percent-

age of execution could be extracted [20]. NGTDM re-

presents the degree of similarity of voxel strength of

adjacent parts based on one voxel and includes congestion,

complexity, and texture strength characteristics. There are

also a number of higher-order texture features, each with

their own characteristics.

3.3. Regional

Regional features represent quantification between ad-

jacent pixels or voxel in an image and are mainly ex-

tracted using a mathematical modeling approach. There

might be a variety of heterogeneities within a single or

same type of tumors, which is important for radiomics

outcomes. Therefore, it should be possible to accurately

characterize the spatial distribution of similar gray inten-

sity in the tumor [21].

3.4. Skeleton

It provides information about the tumor shape in organs

and tissues, thickness, and deformation where the tumor

develops. It can be used in computer morphology analysis,

and precisely locates and calculates tumors through quan-

titative measurement and segmentation of relevant organs

and tissues [22].

GLCMx,y i, j  = 
1

ParisRO1

----------------------  
p=1

N x–

  
q=1

M y–



1 = if I p, q  = i, I p x+ , q y+  = j

and I p, q , I p x, q y+ +  ROI
0 = otherwise






d  = x, y 

Fig. 3. (Color online) 2D, 3D voxel (green) and associated direction along each axis (x, y, z). Statistical texture features (ex. glcm,

glrlm, and ngtdm) are defined according to the relationship between the constant directionality and the surrounding voxels, and the

matrix or pixel in the image may be summarized as such concepts.
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4. Application of Clinical Case 
of Radiomics in Oncology

Research through radiomics can be applied to various

clinical tumor cases. Here are some clinical cases that can

be actively applied.

4.1. Lung-GGO

In generally, early lung carcinomas and precursors are

in the form of GGO or have partially solid nodules. In

other words, medical images of GGO shows that it can

reflect the progression from invasive lesions induced by

accumulation of gene mutations. According to many pre-

vious studies, visual and objective assessment in pixel or

voxel using quantitative radiomics analysis may be helpful

in finding small pathologically invasive components that

are difficult to evaluate [23]. The mainly used image types

are CT images and the same entropy or high attenuation

value as the CT attenuation value shown in the histogram

has been reported as a major distinguishing factor of lung

adenocarcinoma. In addition, a recent study, the ROI sett-

ing of 18F-FDG PET/CT was performed to separate high-

risk upper and lower regions diagnosed in lung cancer

and in related to genetic modification such as tumor size

and transformation radiomics analysis are applied as a

main method for predicting meta-gene [24]. Non-invasive

analysis and research through radiomics in lung cancer

and the prediction of lung tumor growth are no longer

difficult.

4.2. Head and Neck–HNSCC

HNSCC (Head and neck squamous cell carcinoma) can

occur in the head and neck, including the pharynx and

larynx, except for the eye ball, brain, ear, and esophagus

etc.

Cancer can develop covering the head and neck mucosa,

including frontal sinus, nasal, oral cavity, tongue, salivary

glands, and adjacent areas. It is known for more than

thirty places [25]. Survival and tumor progression of

patients can be grasped through radiomics using clinical

data such as smoking, drinking, HPV, age, site of primary

etc. and images from CT, MRI (T1, T2) and PET/CT [26-

28]. In general, head and neck cancers, including squamous

cell carcinoma (SCC), such as HNSCC, have a rapid

progression of tumor metastasis, and the predictive value

of patho-physiological analysis may be low and the result

may not be accurately reflected. Mostly CT and MRI

images are used, but recently, 18F-FDG PET/CT or sing

PET is used to identify the high-risk upper/lower regions

according to the risk of tumor by setting ROI of high

tumor uptake rate is going on.

4.3. Liver

Research on liver tumors focuses primarily on tissue

analysis, and quantitative analysis through images is limit-

ed. Most studies have focused on the relation between

radiomics features from medical image and clinical charac-

teristics, including survival, recurrence, and treatment

response after chemotherapy, but rarely deal with the

relation between genomic data and radiomics features

from medical images [29]. The study is focused on HCC,

which is the most common disease among liver tumors,

and use partial results of radiomics features from MRI

images and total CT images texture features, or threshold

values calculated through ICC statistical analysis by analyz-

ing two types of images, respectively [30]. HCC have a

risk leading to end-stage liver disease with minimal symp-

toms early and is known to have heterogeneity within or

between individuals (TP53, TOP2A, CTNNB1, CDKN2A

AND AKT1 ETC) [28].

Therefore, predicting the biological progression of HCC

through correlation analysis between genetic data and

radiomics feature can be effective for proper treatment

and prevention. Further research is expected to correlate

Table 1. Literature lists recently in study through radiomics and radiogenomics.

Author Type of Radiomics Country Cancer type Number of patients Image modality

Xue et al. (2019) Radiomics China Nasopharynx 303 MR

Chao et al. (2019) Radiomics China HNSCC 113 CT

Wei et al. (2018) Radiomics China Lung-GGO 109 CT

Xia et al. (2018) Radio-genomics China HCC 40 CT

Chan et al. (2017) Radiomics Taiwan Nasopharynx 101 PET

Dong et al. (2017) Radiomics China SqCC 116 PET

Lemarignier et al. (2017) Radiomics France Breast Cancer 170 PET

Hui et al. (2017) Radiomics Singapore HCC 57 MR

Kim et al. (2016) Radiomics Korea Parotid gland 46 PET

Ha et al. (2014) Radiomics Korea ADC 30 PET
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with clinical data such as patient prognosis, tumor size

and growth, and clinical data such as microvascular

invasion and pathological grade.

5. Conclusion and Future Aspects

Radiomics have developed through various methods

and can apply various clinical cases, but some tumors

may still be in their infancy. In the early stages of radio-

mics analysis, the characteristics were found to be mostly

unstable and texture features were not classified. How-

ever, there are many efforts have been made to continu-

ously improve standardization and classify according to

texture feature features [31-33]. At present, most studies

through radiomics are carried out by extracting features

from a single modality of medical image, but there is the

possibility to apply texture features extracted from several

different type of medical image simultaneously using a

variety of analytical methods. By combining genetic datas

(anatomical, functional and metabolic, etc.), clinical data

(age, living environment, location of primary tumor, tumor

progression, surgical status, etc.) and radiomics features

from medical images, the results of research of radiomics

fields can provide diagnose and classify of tumors useful

information on oncology in connection with predicting

treatment response, predicting patient survival. Above all,

the processes can be provided non-invasively, and the

results of analysis can be produced by quantitative and

objective indicators, not by the subjective opinion of in-

spectors and the reader. For more accurate study, Collabo-

ration with experts in various fields such as statisticians,

computer programmers and medical scientists is an essential.

In conclusion, the role of radiomics is growing in

oncology using texture features extracted from medical

images more than ever, and radiomics data offers the

potential in a wider variety of ways. Therefore, radiomics

will be regarded to occupy an essential position in the

development of precision medicine in the oncology field

in the near future [34].
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