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This paper first presents a general two-dimension (2D) harmonic analytical solution for the magnetic field of

electric machines in the Cartesian coordinates. In this solution, the relative permeance is directly considered in

Laplace and Poisson’s equations, and the particular solutions in Cartesian coordinates are solved. By applying

the complex Fourier separation method, with the boundary and interface conditions, the magnetic field in the

inhomogeneous region is solved from system equations. Numerical examples validate the presented method and

the obtained results have a satisfactory agreement with the finite element analysis. The proposed model in this

paper has a significant value for modelling electric machines, such as linear permanent magnet (PM) machines

and axial flux PM machines. 
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1. Introduction

Nowadays, for the sustainable development of the

environment, there is a critical need for “electrification or

“more electric in industrial applications [1]. Therefore,

electrical machines (EE) play a key role in the foreseeable

future.

Several approaches are utilized to design electric machines.

The finite element model (FEM) is the most commonly

used due to its high accuracy and friendly Human-

machine interface [2-4]. However, the time cost of FEM

simulation is often counted by hours or even days when

the 3D geometry is complex, which is the case for axial

flux PM machines [5, 6]. Designers have to make a trade-

off between accuracy and computational time on the

modelling. An alternative method is analytical modelling

(AM), which is a powerful tool to calculate the magnetic

field of the EE [7]. What’s more, AM can provide

valuable insight into the parameters in the equations.

Therefore, it is widely used in the EE initial design and

optimization stages.

Until now, several analytical models for electromagnetic

field calculation have been developed and proposed, for

example, Schwarz-Christoffel (SC) mapping and sub-

domain model (SDM). It has been a challenge to model

the magnetic nonlinearity in EE accurately using analytical

methods since the iron permeability change significantly

as the magnetic core saturates. In [8, 9], the relative

permanence in the air gap could be obtained by SC

mapping, thus, the slot effect is considered. In [10, 11],

the SDM is used to obtain the general expression of each

domain by the separation of variables. However, most of

the AMs are developed based on the assumption that iron

materials have infinite permeance, thus the saturation

effect in a ferromagnetic material is ignored. This assump-

tion causes calculation errors. To solve this problem, two

approaches are proposed. One is the elementary SDM

proposed by Dubas, which divides the motor into multiple

solution domains, and solves the partial differential equa-

tions of each domain [12]. The other method is harmonic

modelling (HM) developed by Sprangers, which gives the

general solution of the EE in 2D polar coordinates and

has been widely used [13]. Different from elementary

SDM, the HM technology considers the permeance of the

iron part and embeds it into the complex general solutions.

In [14], Z.Djelloul considers the local magnetic saturation

in the iron parts and calculates the electromagnetic

performance of the switch reluctance machine. Further
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work is carried out on the prediction of iron-core loss in

PM machines [15]. For more complex electromagnetic

structures, such as coaxial magnetic gears, the HM also

has achieved good accuracy [16]. From the literature

survey, we can learn that the HM can well consider the

non-linear properties of the ferromagnetic materials. It is

worthy to point out that all previous studies are focused

on the radial flux motors in the polar coordinates system.

With regards to the axial flux PM and linear PM

machines, which are modeled in Cartesian coordinates,

there are no solutions.

In this paper, the first analytical solution based on the

HM approach for the 2D electromagnetic in Cartesian

coordinates is developed and presented. The proposed

model divides nonlinear ferromagnetic materials into

several parts and considers the influence of material

nonlinearity and local saturation through the iterative

algorithm. The correctness of the proposed model is

verified by comparing the HM and FEM results of two

numerical examples. Moreover, the proposed model is an

effective tool and has significant value for the design and

optimization of other types of electromagnetic devices in

the Cartesian coordinates system.

The paper is organized as follows: Section II derives the

general form of the harmonic model in the 2D Cartesian

coordinates system. In Section III, two numerical examples

are introduced to verify the HM, and the solutions of

partial differential equations in each subdomain are given.

In Section IV, the iterative algorithm considering the

nonlinearity of ferromagnetic materials is introduced. The

results from the proposed approach and FEM are

compared in Section VI. The conclusions of the research

are reached at the end of the paper.

2. Harmonic Subdomain Model 
in Cartesian Coordinates

According to Gauss’s law, the magnetic flux density

vector B is divergence-free, i.e., . In addition, in

the absence of any current, according to Ampere’s law of

magnetism, the magnetic field intensity vector H is curl-

free, i.e., , or  under the current

situation [17]. The constitutive relation between B and H,

given by

 (1)

where M is the magnetization vector, μ0 is the free space

permeability, and μrec is the relative permeability of the

PM material. Substituting (1) into Ampere’s law yields

 (2)

Using the magnetic potential vector, 

 (3)

Substituting (1) into (2) and choosing Coulomb gauge

, Poisson’s equation is obtained as 

 (4)

The magnetic field equation for the considered Cartesian

coordinates system results in

  (5)

where Mz and Mx are the normal and tangential components

of M, respectively; J is the current density.

In the Cartesian coordinates, we define the calculation

region length L in x-direction equals 2πRm, then, the

length x can be replaced by angle θ by using the formula

x/Rm, as shown in Fig. 1(b) [11].

Then, (5) can be rewritten as [18]

 (6)

For the magnetic vector potential A, the complex Fourier

series representation is given by [13]

  (7)

where n represents the harmonic ordinal number. 

Thus, the relations between the Fourier series coefficients

of B in θ- and z-directions with that of the magnetic

vector potential A in z-direction Az can be expressed as

[15]: 

  (8)

where Bz and Bθ are the normal and tangential components

of magnetic flux density, respectively. Kθ is the diagonal

matrix of harmonic order n, given by0B  
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Fig. 1. 2D Cartesian coordinates model. (a) A cylinder in the

Cartesian coordinates system, (b) Definition of a point (z, θ)

with respect to the cartesian coordinates system (z, x).
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  (9)

where Nsh represents the highest spatial harmonic taken

into account in the magnetic field solution.

Then, substituting (8) into (1), the expression for magnetic

field strength in normal direction Hz and tangential

direction Hθ are obtained as

 (10)

where μc,z and μc,θ represent the permeability convolution

matrices for the normal and the circumferential component

respectively.

Thus,  can be rewritten as

 (11)

After substituting (10) into (11), the magnetic field

equation for the inhomogeneous region is obtained as

  (12)

where , and .

Thus, A can be solved using the separated variables

method, as

  (13)

where

  (14)

  (15)

3. Comprehensive Numerical Examples

To verify the proposed 2D harmonic model, the obtained

formulations are implemented for two slotted benchmark

topologies, as shown in Fig. 2. The parameters of the

benchmark topology are given in Table 1. To simplify the

analysis, the nonlinearity of the backplates of the two

models is not considered (μr = ∞), while the nonlinearity

of the rest of the ferromagnetic materials is discussed in

detail in section III. 

Model A is divided into two calculation regions, namely,

the air-gap region (region I) and the stator-winding region

(region II), while model B is divided into three calculation

regions, namely, the stator-winding region (region I), the

air-gap region (region II), and the nonlinear region of

ferromagnetic materials (region III). The magnetic field is

generated by applying current to the windings. The

analytical calculation results of the magnetic field

components in the air-gap region are compared with the

FEM to verify the proposed 2D harmonic model. 

The angular position of i-th stator slot opening is

defined by

  (16)

where Qs is the number of stator slots.

The current density J and the complex Fourier series

expansion Jz(θ) are given by

  (17)

 (18)

The complex Fourier coefficients of  can be

obtained by

 (19)

where θss and d are stator slots width and windings width,

respectively.

The current densities of the double-layer windings are

0

0

sh

sh

N

K

N



 
   
  

�

� � �

�

1 1

, ,

1
, z

z c z z c

m

A
H j K A and H

R z
  

 
 


   



H J 

1

z z

m

H
j K H J

z R






 



2

0 0 ,2 2

1 1 1

z z c

m mm

A
VA M j SM J

R Rz R
 

  


    


1

, ,c c z
V K K

  
 





1

, ,c c z
S K

 
 





2

1 2

m m

z z
V V

R R

n n m m
A a e b e R F R F



   

2 1

1 0 , ,

I

I c c z z
F j V K M

 
  

 

 

1

2 ,c z
F V J








2
, 1,2, ,

i s

s s

i i Q
Q Q

 

    �

 
z z

J J e

 
,

ˆ

n
jn

z z n

n

J J e










 

,

ˆ

z n
J

   2 2
, ,1 ,2

1

1
ˆ 1 1

2

ss sss

i

Q
jn jn

jnjnd jnd

z n i i

i

J J e e J e e e
jn

 











 
    

 


Fig. 2. (Color online) Benchmark topologies are used for the

validation of the presented model. (a) model A, (b) model B.

Table 1. Geometric parameters of model A and model B.

Model z0/mm z1/mm z2/mm z3/mm

A 0 10 16.7 39.6

B 0 22.9 27.6 37.6
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defined as

  (20)

  (21)

where Nc is the conductor number of the slot coil, [iA, iB,

iC] are the armature currents, S is the surface of the stator

slot coil, C1
T and C2

T are the transpose of the connecting

matrix between the three-phases current and the stator

slots, which represent the distribution of stator windings

in the slots. 

For the sake of clarity of the general solutions in the

different domains, the following notation is adopted in

this paper

  (22)

The solution of model A for each region is formulated

as follows 

  (23)

 (24)

and for model B

  (25)

  (26)

  (27)

The unknown coefficient matrices, a and b, in (23)-(24)

and (25)-(27), are usually obtained from the boundary

conditions and interface conditions of the magnetic field. 

For model A, boundary conditions between two adjacent

media are

 (28)

 (29)

Furthermore, at the outer boundary of the region I and

region II, an interface with infinitely relative permeability

material is assumed, therefore

 (30)

  (31)

According to the same principle, for model B, boundary

conditions are

 (32)

 (33)

  (34)

  (35)

  (36)

  (37)

Finally, all boundary condition equations are collected

and written in matrix form as

 (38)

where U, F, and Y represent the unknown coefficients, the

coefficient factors, and the constant values in the boundary

condition equations, respectively.

According to the above analysis, the magnetic vector

potential Ak of each region can be obtained. Then, Bz and

Bθ of each region can be deduced from Ak. 

 (39)

4. The Nonlinearity of Ferromagnetic 
Materials

The harmonic subdomain model proposed in this paper

can consider the nonlinear effects of ferromagnetic materials.

As shown in Fig. 3, the permeability distribution can be

expressed as [14]

  (40)

However, μ(θ) can also be expressed as a complex

Fourier series form as

  (41)

  (42)
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 (43)

To calculate , we replace  by 

in (43).

The normal and tangential relative magnetic permeability

matrices μc,z, and μc,θ are obtained by

  (44)

According to the magnetic field partial differential

equation, it is can be seen that the relative permeability of

ferromagnetic materials has been embedded into the

solution of the static magnetic field. If the region is

divided more precisely along with the normal and

tangential directions, as shown in Fig. 4, the influence of

the nonlinearity of ferromagnetic materials can be well

considered through the iterative algorithm. On the other

hand, as the calculation area increases, the calculation

time will also increase. Therefore, the division of the

nonlinear material calculation area is the compromise

between calculation accuracy and calculation time. 

Fig. 5(a) is the B-H curve of commonly used soft-

magnetic materials, according to (1), the μ-B curve can be

obtained as shown in Fig. 5(b). The μ-B function for the

iterative calculation can be obtained by fitting the original

data [19]. When the ferromagnetic material is saturated, it

can be found that the fitting data are in good agreement

with the original data. 

Fig. 6 shows the iterative calculation flowchart. First,

the relative permeability of each soft-magnetic material is

set to the maximum value (μr=8000), and then the harmonic

coefficient matrix is solved to obtain the magnetic flux

density of each calculation area. The relative permeability

of the corresponding calculation area is obtained by the

μ-B curve. Then, the relative permeability of each calculation

area is updated until the convergence requirement is met.
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Fig. 3. Permeability distribution of a calculation region.

Fig. 4. (Color online) The nonlinearity of ferromagnetic mate-

rial. (a) Multilayer division of the region, (b) Permeability dis-

tribution of lth region layer.

Fig. 5. (Color online) Magnetic characteristics of the soft-magnetic material. (a) B-H curve, (b) μ-B curve.
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5. FEM Validation

According to the parameters of Table 1, 2D FEM of

Models A and B are established, as shown in Fig. 7. To

simplify the analysis model, the relative permeability of

yoke (μr=∞) is not considered, and the nonlinearity of

tooth (μ=μiron) material is only considered.

The load current at a certain time is ia = 0 A, ib = 6 A,

and ic = −6 A. The comparison of the normal and

tangential components of the flux density at the air-gap

center of Model A and B is shown in Fig. 8 and 9.

Furthermore, the harmonic spectrum of normal and

tangential components is compared. It can be seen from

the waveform that the analytical calculation model is in

good agreement with the FEM. From the comparison, the

harmonic values of the proposed model are close to those

of the FEM. 

The calculations are carried out for three different

values of the relative permeabilities of the studied models

(viz., 50, 100, and 1000), and compared to the FEM. The

comparison of the air-gap flux density components are

shown in Fig. 10 and Fig. 11. It can be found that the

analytical model and the FEM are in good agreement

under three different relative permeabilities. The proposed

model can well consider the saturation effect (viz., the

relative permeability is 50).

Fig. 6. (Color online) Calculation iteration process flowchart.

Fig. 7. (Color online) 2D FEM. (a) Model A, (b) Model B.
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In the harmonic subdomain model proposed in this

paper, the selection of harmonic numbers not only affects

the calculation accuracy but also affects the calculation

time. The root-mean-square (RMS) error is used to

evaluate the calculation accuracy of the analytical model

proposed in this paper [13]. 

It can be seen from Fig. 12 that with the increase of

harmonic number, the calculation time increases, and the

Fig. 8. (Color online) Magnetic flux density distribution in the center of the air-gap of Model A. (a) Comparison of the normal

component, (b) Comparison of the tangential component, (c) Harmonic spectrum of the normal component, (d) Harmonic spectrum

of the tangential component.

Fig. 9. (Color online) Magnetic flux density distribution in the center of the air-gap of Model B. (a) Comparison of the normal com-

ponent, (b) Comparison of the tangential component, (c) Harmonic spectrum of the normal component, (d) Harmonic spectrum of

the tangential component.
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longer calculation time is not conducive to the initial

design of electromagnetic equipment such as motors.

When the harmonic number is 120 or 140, the error has

met the calculation requirements, and the calculation time

cost is small, which is suitable for analyzing complex

electromagnetic models. Therefore, selecting the appropriate

harmonic number according to the calculation model can

reduce the calculation time while ensuring calculation

accuracy.   (45) 
2
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pc
N

FEA Ana

m m
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Fig. 10. (Color online) The influence of different relative permeability of Model A. (a) Comparison of the normal component, (b)

Comparison of the tangential component.

Fig. 11. (Color online) The influence of different relative permeability of Model B. (a) Comparison of the normal component, (b)

Comparison of the tangential component.

Fig. 12. (Color online) Influence of the number of harmonics. (a) Calculation time, (b) Error of the normal and tangential com-

ponents of magnetic flux density of Model B.

Table 2. The comparison of computation time.

Model A Model B

Harmonic Model 1.008 s 1.983 s

FEM 7 s 18 s



Journal of Magnetics, Vol. 27, No. 3, September 2022  271 

The FEM is computationally accurate, and complicated

geometric details can be precisely considered. However, it

is time-consuming and not conducive to the initial design

stages and dynamic analysis optimization. In terms of the

computation time, the FEM model has 14638 elements of

Model A and 18163 elements of Model B, it requires 7

and 18 seconds to obtain the calculation results [i7-7700

K @ 4.20(GHz) CPU], respectively. The Harmonic Model

proposed in this paper, on the other hand, require only

1.008 and 1.983 seconds to get the magnetic calculation

results. Therefore, the Harmonic Model is much faster

than FEM.

6. Conclusion

This work proposes a general 2D analytical solution for

the magnetic field of EE in Cartesian coordinates, based

on HM technology. It should be noted that the relative

permeability of ferromagnetic materials is embedded into

the solution of the static magnetic field, and the nonlinear

effect of ferromagnetic materials can be considered by the

iterative algorithm. The proposed method can be utilized

to analyze various electromagnetic fields including axial

flux PM motors and linear PM motors in the 2D Cartesian

coordinates system. The correctness of the proposed

harmonic model is verified by two numerical examples.

The primary advantage of the method is its versatility for

magnetic field analysis and offers a new way to quickly

and accurately analyze the magnetic field in the 2D

Cartesian coordinates system. 
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