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The purpose of this study was to confirm the utility of the median modified Weiner filter (MMWF) noise reduc-

tion algorithm in T2-weighted brain MR images. We acquired brain MR images using both real experiment

and simulation, and performed comparative evaluation with conventional noise reduction algorithms through

calculation of factors for the noise level and similarity. As a result, evaluation of the noise level and similarity

showed the most improved in the image, which the MMWF noise reduction algorithm was applied. Moreover,

additional experiment was conducted using real MR device and water phantom to more clearly prove the effi-

ciency of the MMWF noise reduction algorithm. The noise level and intensity profile results derived from the

real T2-weighted MR image proved the effectiveness of the MMWF noise reduction algorithm. In conclusion,

the proposed MMWF noise reduction algorithm demonstrated a very promising performance for improving

the image quality in T2-weighted MR image.

Keywords : MRiLab simulation program, T2-weighted image, Median modified Wiener filter (MMWF), Noise reduc-

tion algorithm

1. Introduction

Magnetic resonance imaging (MRI) can create a three-

dimensional (3D) images by measuring the pattern, in

which the atomic nuclei of hydrogen interact with the

magnetic field and absorb and emit electromagnetic

waves of a specific frequency without the risk of radiation

exposure [1-4]. Then, acquired MR images were recon-

structed to cross-sectional for the clinical diagnosis of

lesions in the patient’s body [5-7]. However, white noise

with Gaussian distribution was occurred likewise other

medical images when acquisition of MR images. The

main cause of Gaussian noise added to MR images is

thermal noise due to object for imaging, coil of MR

devices, and signal interference from various electronic

component [8]. MR images were reconstructed by inverse

discrete Fourier transform for raw data. Because linearity

and orthogonality of Fourier transform, real and imaginary

channels in k-space are affected by uncorrelated Gaussian

distribution with the same variance and zero mean [9].

Then, MR images with complex values are converted to

magnitude and phase images with nonlinear operation,

and this process changes the probability density function

(PDF) of the MR images data. The signal intensity of MR

images was calculated using two independent Gaussian

variables and follows the Rician distribution [10]. The

generated noise deteriorated the image characteristics of

the MR images, thus degrading the accuracy of the

diagnosis. To address this problem, various software-

based noise reduction algorithms have been proposed.

Many studies have investigated noise reduction using

conventional algorithms with the median, Gaussian, and

Wiener filters [11-14]. However, the main limitation of

the above-mentioned conventional noise reduction

algorithms is that information about the boundary line is

lost due to a decrease in sharpness caused by blurring

effect, which arises when the noise generated in multiple

pixels is continuously removed. On the other hand,

various studies on the latest techniques such as non-local

means, wavelet transform, and deep learning algorithm to

improve the noise problem of MR images are actively

being conducted. However, the above-mentioned techni-

ques have the disadvantages of requiring time resolution,

control over many parameters, and a large amount of
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data, respectively.

To address this issue, the noise reduction technology a

median modified Wiener filter (MMWF) noise reduction

algorithm was proposed by Cannistraci et al. in 2009

[15]. This algorithm was used to restore a deteriorated

image by minimizing the average error and not reflecting

the high-frequency noise outliers by applying median

values during Wiener filtering [16, 17]. Especially, the

MMWF noise reduction algorithm can fast image pro-

cessing based on simple formula for calculation. In

addition, the users can easily adjust the smoothing of the

images due to it only has one parameter (i.e., kernel size)

even if they have little or no professional knowledge

related to image processing. To replicate the image acqui-

sition protocols of MRI scanners, simulation tools that

can create the image acquisition conditions are being

developed. In particular, in the case of MR images, the

MATLAB-based MRiLab simulation program that can

easily set various variables and sequences and acquire

images without motion artifacts has been developed [18].

The developed MRiLab simulation program facilitates

straightforward research, and images can be compared

and analyzed by changing various parameters. In particular,

T2-weighted images can be evaluated to identify lesions,

such as at bleeding sites and during tumor screening [19-

21].

Therefore, in this study, the usefulness of the MMWF

noise reduction algorithm was evaluated using images,

which acquired through MRiLab simulation program and

real MR device. In addition, the signal-to-noise ratio

(SNR), coefficient of variation (CV), and contrast-to-noise

ratio (CNR) were calculated to quantitatively evaluate the

noise level, while the correlation coefficient (CC) and

universal quality index (UQI) were determined for similarity

evaluation. In addition, the intensity profile was extracted

to evaluate the pixel fluctuations in the image. The

performance of the proposed algorithm was compared

with that of the median, Gaussian, and Wiener filters.

2. Materials and Methods

2.1. Acquiring of simulated T2-weighted brain images

Simulated T2-weighted brain image was generated using

the MRiLab simulation program. The imaging parameters

were the following: a spin echo (SE) pulse sequence with

flip angle (FA) = 90°, bandwidth = 80 kHz, slice thick-

ness = 6 mm, field of view = 160 × 200 mm2, matrix size

= 640 × 800, and TR/TE = 10000/50 ms. Then, we added

the Gaussian noise (i.e., amplifier noise) to the T2-

weighted image acquired for modeling the deteriorated

image. Generally, since MR images are affected by Rician

noise, modeling of Gaussian noise with a single variance

value is inappropriate. Thus, degradation images were

obtained by adding Gaussian noise with various variance

values in this study. PDF of Gaussian noise is defined as

follows [22, 23]:

,  (1)

Here, z represents the gray level, and  and  the

mean and variance value of random variable z, respec-

tively. Based on above equation, we modeled Gaussian

noise with variance values of 0.001, 0.005, 0.01, 0.05,

and 0.1, which mean value 0 is applied, from the T2-

weighted image. Fig. 1 shows the deteriorated images and

region of interest (ROI) set for quantitative evaluation.

2.2. Modeling of the MMWF noise reduction algo-

rithm

The median filter, which is a conventional noise reduc-

tion algorithm, has the disadvantage of poor spatial

resolution, while a Wiener filter has the problem of low

efficiency of noise removal [24]. To compensate for these

disadvantages, a MMWF noise reduction algorithm was

modeled. This approach applies a noise reduction method

based on the Wiener filter. The Wiener filter bw is defined

as:

,  (2)

where bw(x, y) is the output pixel value at location p(x, y),

 and 2 are the mean and variance of the Gaussian noise

in the image, v2 is the noise variance of the mask matrix,

and x × y is the size of the neighborhood area in the mask.

The modification in the Wiener filter concerns the local

mask mean around each pixel . This value is replaced

with the local kernel median around each pixel equation

image. In the MMWF noise reduction algorithm, a pixel

signal is processed as an intermediate value instead of an

average value. The functional of the MMWF noise

reduction algorithm bmmwf is defined as:

,  (3)

where bmmwf (x, y) is the output pixel value at location p(x,

y),  is the median value, which is used instead of the

mean value in the Wiener filter. This equation calculates

MMWF noise reduction filter with nonlinear spatial

domains. By listing the signal strength of the pixels and

using the median value, the effect of the outliers can be
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minimized.

2.3. Quantitative evaluation of image characteristic

To evaluate the noise level of the image, the SNR, CV,

and CNR of each image were calculated [25]. The SNR

and CV are quantitative metrics for evaluating the noise

in an image, while the CNR measure the difference in

signal between two relevant structures in the image. The

SNR, CV, and CNR are calculated as:

, (4)

, (5)

,  (6)

where SA and SB are the mean values in the ROI and

background, respectively, and A and B are the standard

deviations of the ROI and background, respectively.

Among these factors, the CNR should be calculated by

ROIs in two adjacent tissues. However, in the simulated

T2 weighted MR images, an effective ROIs could not be

established due to the small white matter region. There-

fore, in this study, the background is set as the air region

(Fig. 1).

2.4. Similarity evaluation of image characteristics

To evaluate the similarity of the reconstructed image to

the original image, the CC and UQI were calculated. The

CC measures the similarity between two images in terms

of the Pearson autocorrelation coefficient. The UQI

represents the linear correlation between two images, and

it measures the similarity in the intensities of the two

compared images. The closer the value of each factor is

to 1, the higher is the similarity between the two images.

The CC and UQI are calculated as follows:

, (7)

,  (8)

where N is the number of image pixels; fp is the original

image; gp is the restored image;  and  are the average

pixel values of each corresponding image; f and g are

the average of the signal intensity; f and g are the

standard deviations, respectively, and fg is the covariance

SNR = 
SA

B

------

CV = 
A

SA

------

CNR = 
SA SB–

A

2

B

2

+

----------------------

CC = 
p 1=

N
fp f–  gp g– 

p 1=

N
fp f– 

2

p 1=

N
gp g– 

2
------------------------------------------------------------------

UQI f, g  = 
4fgfg

f

2

g

2

+  f

2

g

2

+ 
---------------------------------------------

f g

Fig. 1. (Color online) The deteriorated images, which Gaussian noise added with various variances (values: 0.001, 0.005, 0.01,

0.05, and 0.1) using MATLAB program.
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between the two images.

3. Results and Discussion

Brain lesions and tumor tissues contain a large amount

of water. In T2-weighted MR images, as most of the

lesions appear as high-intensity signals, these images are

often used to diagnose lesions. To accurately diagnose

lesions, maintaining sharpness while reducing noise is

important. The MRiLab simulation program can generate

images similar to those acquired with a MRI scanner. In

addition, the simulated images can be modeled using the

MATLAB program, and various algorithms can be applied

to improve the image characteristics. Therefore, in this

this study, the deteriorated image was modeled based on

the simulated T2-weighed MR image, and the proposed

MMWF noise reduction algorithm was applied to evaluate

its utility.

We applied the conventional noise reduction algorithms

and MMWF noise reduction algorithm in deteriorated

images, which Gaussian noise with various variance

values added, and the kernel size of each noise reduction

algorithm was set to 5 × 5. Fig. 2 shows the noisy image

(without algorithm applied) and reconstructed magnified

images corresponding to the region in box A in Fig. 1.

Quantitative evaluation factors were used to confirm the

improvements in the image characteristics. Fig. 3 shows

the results of the measured SNR, CV, and CNR of the

reconstructed images obtained with each algorithm applied

to the deteriorated images. The quantitative evaluation

factors were measured based on the T2-weighted brain

image simulated with the MRiLab simulation program.

The ROI set for evaluation is shown in Fig. 1.

The average SNR values of the noisy, median filter,

Wiener filter, Gaussian filter, and MMWF noise reduction

algorithm were calculated about 7.14, 17.15, 20.57, 11.06,

Fig. 2. Application of the conventional noise reduction algorithms and proposed MMWF noise reduction algorithm in deteriorated

images.
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and 27.03, respectively. The SNR results showed im-

provement in the order of the noisy, Gaussian filter,

Wiener filter, median filter, and MMWF noise reduction

algorithm. In particular, it was confirmed that the average

SNR value of the MMWF noise reduction algorithm

applied image was improved by about 3.81, 1.47, 1.68,

and 2.54 times compared to the noisy, median filter,

Wiener filter, and Gaussian filter images, respectively. In

addition, average CV values of the noisy, median filter,

Wiener filter, Gaussian filter, and MMWF noise reduction

algorithm were calculated about 0.40, 0.17, 0.18, 0.26,

and 0.13, respectively. The CV results showed improve-

ment in the order of the noisy, Gaussian filter, median

filter, Wiener filter, and MMWF noise reduction algorithm.

In particular, it was confirmed that the average CV value

of the MMWF noise reduction algorithm applied image

was improved by about 3.30, 1.38, 1.47, and 2.11 times

compared to the noisy, median filter, Wiener filter, and

Gaussian filter images, respectively. Moreover, average

CNR values of the noisy, median filter, Wiener filter,

Gaussian filter, and MMWF noise reduction algorithm

were calculated about 6.48, 16.84, 15.63, 10.16, and

Fig. 3. Results of the (a) signal-to-noise ratio (SNR), (b) coef-

ficient of variation (CV), and (c) contrast-to-noise ratio (CNR)

for reconstruction images using noisy, median filter, Wiener

filter, Gaussian filter, and proposed MMWF noise reduction

algorithm in simulated images, which Gaussian noise added

with various variances (values: 0.001, 0.005, 0.01, 0.05, and

0.1).

Fig. 4. Results of the (a) correlation coefficient (CC) and (b)

universal quality index (UQI) for reconstruction image using

noisy, median filter, Gaussian filter, Wiener filter, and pro-

posed MMWF noise reduction algorithm in simulated images,

which Gaussian noise added with various variances (values:

0.001, 0.005, 0.01, 0.05, and 0.1), compared to original image.
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25.63, respectively. The CNR results showed improvement

in the order of the noise, Gaussian filter, median filter,

Wiener filter, and MMWF noise reduction algorithm. In

particular, it was confirmed that the average CNR value

of the MMWF noise reduction algorithm applied image

was improved by about 3.97, 1.47, 1.68, and 2.54 times

compared to the noisy, median filter, Wiener filter, and

Gaussian filter images, respectively. The best SNR and

CV, which evaluate the noise level, and CNR, which

corresponds to the contrast, were obtained for the image

reconstructed with the MMWF noise reduction algorithm.

Fig. 4 shows the results of the measured CC and UQI

based on the T2-weighted brain image simulated with the

MRiLab simulation program. The average CC values of

the acquired original simulated image (i.e., noise free

image) and those obtained with the noisy, median filter,

Wiener filter, Gaussian filter, and MMWF noise reduction

algorithm were 0.84, 0.96, 0.95, 0.91, and 0.98 respec-

tively (p-value < 0.05). The best results were obtained for

the image reconstructed with the MMWF noise reduction

algorithm. Especially, the CC values of the image with

MMWF noise reduction algorithm improved by approxi-

mately 1.20, 1.02, 1.03, and 1.08 times compared with the

noisy, median filter, Wiener filter, and Gaussian filter

images, respectively. The corresponding average UQI

values were 0.85, 0.96, 0.95, 0.92, and 0.98, respectively.

Especially, the UQI values of the image with MMWF

noise reduction algorithm improved by approximately

1.19, 1.02, 1.03, and 1.07 times compared with the noisy,

median filter, Wiener filter, and Gaussian filter images,

respectively. Both factors used for similarity evaluation

indicated the superior performance of the MMWF noise

Fig. 5. (Color online) The real T2-weighted MR image for

water phantom with set ROIs for visual assessment and quan-

titative evaluation of image quality.

Fig. 6. Enlarged images of Box B in Fig. 5 of the T2-weighted MR image for the water phantom using the noise reduction algo-

rithms: (a) Noisy, (b) median filter, (c) Wiener filter, (d) Gaussian filter, and (e) MMWF noise reduction algorithm.
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reduction algorithm.

To clearly demonstrate the effectiveness of the MMWF

noise reduction algorithm, further experiments were con-

ducted using real MR device. To acquire the real T2-

weighted MR image, we used a real 3.0 T MR device

(Philips Healthcare, the Netherlands) with water phantom.

Then, the imaging parameters were the following: a spin

echo (SE) pulse sequence with flip angle (FA) = 23°, slice

thickness = 5 mm, field of view = 154 × 190, matrix size

= 264 × 211, and TR/TE = 450/18.42 ms (Fig. 5). In

addition, we applied the conventional noise reduction

algorithms and proposed MMWF noise reduction algorithm

to T2-weighted MR images for water phantom. Fig. 6

shows the noisy image (without algorithm applied) and

reconstructed images corresponding to the region in Box

B in Fig. 5. Moreover, Fig. 7 shows CV and CNR were

calculated for noise level analysis. The CV and CNR

results showed improved results in the order of noisy,

Gaussian filter, median filter, Wiener filter, and MMWF

noise reduction algorithm. In particular, the CV and CNR

of the MMWF noise reduction algorithm applied image

showed improvements of approximately 1.35 and 1.04

times that of the noisy image.

Fig. 8 shows the intensity profiles of the images

obtained by applying different filters to the deteriorated

image. The intensity profile represents the signal intensity

of each pixel in a region within a specified range. The

intensity profile was measured based on the T2-weighted

image for water phantom. The range set for evaluation is

shown in Fig. 5 intensity profiles along Line A. As

indicated by the results, the image reconstructed with the

MMWF noise reduction algorithm shows that the signal

distortion on the boundary of the structures is reduced

compared to conventional noise reduction algorithms.

Medical imaging is used an important basis for readings

in the diagnostic process. However, the generated noise

distorts, covers, and damages the information on the

lesion, and provides inaccurate information about the

anatomical details and boundaries. Because of these

reasons, obtaining high-quality images through denoising

is an indispensable requirement for examinations using

the medical imaging system [26-28].

In order to solve the noise problem, various algorithms

applied with the latest technologies have been proposed.

In particular, the discrete Wavelet transform (DWT) [29],

non-local means (NLM) [30], K-singular value decom-

position (K-SVD) [31], and deep learning algorithms [32]

have been actively studied recently, and show excellent

performance in denoising. However, DWF and K-SVD

have complex and many parameters that absolutely affect

Fig. 7. Results of the coefficient of variation (CV) and contrast to noise ratio (CNR) for real T2-weighted MR images with noise

reduction algorithms.

Fig. 8. (Color online) Results of the intensity profile corre-

sponding to Line A in Fig. 5: (a) Noisy, (b) median filter, (c)

Wiener filter (d) Gaussian filter, and (e) proposed MMWF

noise reduction algorithm, compared to T2-weighted image for

water phantom.
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denoising performance, and the setting of these para-

meters is subjective and empirical. In addition, NLM has

limitations that application in medical and research fields

due to inefficient operation time for estimating weights.

Moreover, although deep learning-based algorithms require

a large amount of training data to enhance effectiveness,

it is difficult due to inappropriate environmental and

ethical issue.

For these reasons, the latest technologies mentioned

above have the disadvantage that it is difficult for ordinary

users (i.e. students, non-major researchers, and radiologic

technologist) to use them efficiently for their situation and

purpose. Improperly applied denoising algorithms can

lead to insufficient or excessive smoothing. In particular,

excessive smoothing can be fatal for images with am-

biguous distinctions between signals and noise, such as

fMRI, which detects subtle changes in blood flow and

measures brain activity [33]. In addition, a blurring effect

Fig. 9. The real T2-weighted MR image with MMWF noise reduction algorithm, which was set each kernel size: (a) 3 × 3, (b) 7 ×

7, (c) 11 × 11, (d) 15 × 15, and (e) 21 × 21.

Fig. 10. Results of the coefficient of variation (CV) and contrast to noise ratio (CNR) for real T2-weighted MR images with

MMWF noise reduction algorithms, which were set each kernel size.
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that causes distortion of the lesion and anatomical struc-

ture occurs [34].

Therefore, we modeled MMWF noise reduction algorithm,

which is easy to handle and optimize due to a simple

mechanism, and that can be applied immediately through

fast operation time. The modeled MMWF noise reduction

algorithm was applied from simulation and real MR

images, and comparative evaluation was performed on the

noise level and image restoration with conventional noise

reduction algorithms. As a result, we confirmed that

MMWF noise reduction algorithm is effectively applied

regardless of the added noise level through simulation

studies. Moreover, the feasibility of application from the

clinical field was confirmed by applying MMWF noise

reduction algorithm in real MR images.

However, as mentioned above, the application of an

inappropriate algorithm effects as a factor that degrades

the accuracy of the diagnosis. This means that optimi-

zation of the parameters of the algorithm is required.

Therefore, we analyzed the tendency of image characteri-

stics according to the change of kernel size, which the

only parameter of the MMWF noise reduction algorithm

by conducting further experiment. In order to perform

further experiment, the kernel size of the MMWF noise

reduction algorithm were set to 3 × 3, 7 × 7, 11 × 11, 15 ×

15, and 21 × 21, respectively, and were applied to the real

MR image. In addition, CV and CNR were measured to

quantitative evaluate the noise level. Fig. 9 shows the real

T2-weighted images applied with the MMWF noise re-

duction algorithms, which were set each kernel size. In

addition, Fig. 10 shows measured CV and CNR to analyze

the noise level of T2-weighted MR images according to

the change of the kernel size for MMWF noise reduction

algorithm. As a result, Fig. 10 shows that as the kernel

size of the MMWF noise reduction algorithm increases,

although the results of the noise-related evaluation factors

improve, the degree decreases gradually. In addition, Fig.

9 shows as the kernel size increases, the image signal is

gradually removed and the blurring effect is intensified.

The results, which derived from further experiment, show

that even if an algorithm that has been proven effective is

applied from an MR image, the application of inappro-

priate parameters can degrade the image quality. There-

fore, in the future, we intend to conduct a study on the

optimization of the MMWF noise reduction algorithm for

various conditions and purpose.

5. Conclusion

In this study, we evaluate the efficiency of the MMWF

noise reduction algorithm in T2-weighted MR images. For

this purpose, a T2-weighted MR images, which Gaussian

noise added with various variance, were acquired using

the MRiLab program. In addition, actual T2-weighted MR

images of the water phantom was acquired using real MR

device. In conclusion, the proposed MMWF noise re-

duction algorithm demonstrated a very promising per-

formance for improving the image quality in MRI, thus

facilitating potential applications in current MRI techno-

logy.
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