Structural and Magnetic Properties of Thin-film ScFeO₃

Kwang Joo Kim¹, Jongho Park¹, and Jae Yun Park^{2*}

¹Department of Physics, Konkuk University, Seoul 05029, Korea ²Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Korea

(Received 15 February 2022, Received in final form 16 March 2022, Accepted 16 March 2022)

Structural and magnetic properties of ScFeO₃ compound were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy, and vibrating sample magnetometry (VSM) in comparison with those of Fe₂O₃ and Sc₂O₃. The specimens were prepared as thin films under identical sol-gel deposition process. The XRD data indicated that the ScFeO₃ specimen have cubic bixbyite structure, identical to that of the Sc₂O₃ specimen but different from that of the Fe₂O₃ specimen (rhombohedral). The estimated lattice constant of ScFeO₃ is smaller than that of Sc₂O₃ by 2.9 %. According to the VSM data, the ScFeO₃ specimen showed a magnetic hysteresis curve that is alike in shape to that of the Fe₂O₃ specimen with the saturation magnetization of the former (2.6 emu/cm³) being smaller by 30 % than that of the latter (3.7 emu/cm³). The observed small magnetization in ScFeO₃ implies an antiferromagnetic spin alignment of neighboring Fe³⁺ ions with canted spin magnetic moment.

Keywords : bixbyite, thin film, canted spin, magnetic properties

1. Introduction

There has been a good deal of attention on ABO₃-type compounds, not only for practical applications but also for fundamental solid-state physics. Some of ABO₃-type transition-metal (T-M) oxides are known to have perovskite structure with interesting ferroelectric and superconducting properties. As one of such ABO₃-type T-M oxides, ScFeO₃ is in the middle of two binary ends, Sc₂O₃ and Fe₂O₃.

Sc₂O₃ crystallizes in a cubic bixbyite (Mn₂O₃) structure [1, 2] where Sc³⁺ ions are located at the body center of a cube with six O²⁻ ions occupying its corners. The Sc³⁺ ions can occupy two different body-centered sites along (110) direction, denoted by C₂ (24d) and S₈ (8b) [2]. The two sites differ by the locations of two oxygen vacancies out of eight cube corners. On the other hand, Fe₂O₃ is known to have various crystal structures such as α-Fe₂O₃ (rhombohedral), β-Fe₂O₃ (bixbyite), γ-Fe₂O₃ (spinel), and ϵ -Fe₂O₃ (orthorhombic) [3-5]. As in Fe₂O₃, ScFeO₃ is known to exist in various crystal structures such as orthorhombic, rhombohedral, and bixbyite [6, 7].

In this work, structural and magnetic properties of

ScFeO₃ compound are investigated in comparison with those of Sc_2O_3 and Fe_2O_3 . The specimens were prepared as thin films under identical sol-gel process. The structural properties of the specimen were investigated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The magnetic hysteresis curves of the specimens were investigated by vibrating sample magnetometry (VSM).

Sc atom (atomic number = 21) has [Ar] $4s^2 3d^1$ electronic configuration, while Fe atom (atomic number = 26) has [Ar] $4s^2 3d^6$ electronic configuration. Thus, when the cations in ScFeO₃ have valence of +3, Fe³⁺ has half-filled 3d states ($3d^5$), while Sc³⁺ has no 3d electron. With highspin Fe³⁺ ions in either C₂ or S₈ sites, bixbyite ScFeO₃ might have interesting magnetic properties. The magnetic properties of the ScFeO₃ specimen were analyzed in comparison with those of the Fe₂O₃ specimen.

2. Experimental

ScFeO₃ specimens were prepared as thin films through a sol-gel deposition process. Precursor solution was prepared by dissolving Fe(NO₃)₃·9H₂O and Sc(NO₃)₃·xH₂O together in 2-methoxyethanol and ethanolamine at 170 °C. Spin-coating of the precursor solution was done on Si(100) substrate rotating 3000 rpm for 20 s, followed by

[©]The Korean Magnetics Society. All rights reserved. *Corresponding author: Tel: +82-32-835-8271 Fax: +82-32-835-0778, e-mail: pjy@inu.ac.kr

heating at 300 °C for 5 min. This process was repeated to increase the thickness of the gel film. Post-annealing of the gel film was done at 800 °C for 4 h in air to obtain solid-state thin-film specimen. Thin-film Sc₂O₃ and Fe₂O₃ specimens were also prepared under the same sol-gel process for comparing structural and magnetic properties with ScFeO₃. All specimens have thicknesses in the 500-600 nm range observed by scanning electron microscopy.

The crystal structure of the specimen was investigated by using XRD (Cu K_{α} line, wavelength = 0.15418 nm) under a grazing-incidence geometry with fixed X-ray incidence angle (4°) from the specimen plane. XPS measurements were performed using Al K_{α} line (photon energy = 1486.7 eV) for confirming ionic valences of Sc and Fe ions in the compound. Magnetic hysteresis curves of the specimens were obtained from VSM measurements under external magnetic field applied parallel to the film's plane and varied in the ±15 kOe range.

3. Results and Discussion

The existence of Fe ion in ScFeO₃ can be identified by XPS on Fe 2p electrons. As shown in Fig. 1(a), the binding-energy (B-E) peaks of $2p_{3/2}$ and $2p_{1/2}$ electrons of Fe ions in the ScFeO₃ specimen are located at 709.5 and 723.2 eV, respectively. The observed 2p spin-orbit (s-o) splitting of 13.7 eV implies that the Fe ions have valence of +3 [6]. The satellites are attributable to energy loss of the 2p photoelectrons due to their interactions with spinpolarized 3d electrons in the Fe ion. In Fig. 1(b), the s-o splitting of 4.4 eV between $2p_{3/2}$ (401.3 eV) and $2p_{1/2}$ (405.7 eV) peaks for Sc 2p electrons of Sc₂O₃ implies the existence of Sc³⁺ ions [6]. For ScFeO₃, the observed s-o splitting is consistent with that of Sc₂O₃, but the $2p_{3/2}$ (399.6 eV) and $2p_{1/2}$ (404.1 eV) peaks are shifted to low energies by ~1.7 eV compared to those of Sc₂O₃. Such low-energy shift is attributable to changes of local bonding environment for Sc^{3+} ion due to the Fe^{3+} substitution.

In Fig. 2, XRD pattern of the ScFeO₃ specimen is exhibited in comparison with those of Sc₂O₃ and Fe₂O₃. The ScFeO₃ specimen shows the same (cubic bixbyite) crystal structure as that of the Sc₂O₃ specimen [1, 2]. On the other hand, the Fe₂O₃ specimen shows a different XRD pattern compared to ScFeO₃ and Sc₂O₃. The XRD pattern implies that the Fe₂O₃ specimen has rhombohedral structure (α -Fe₂O₃) [3, 4].

The peaks in the XRD pattern of the ScFeO₃ specimen are seen to shift to higher angles from the corresponding ones of the Sc₂O₃ specimen, indicating that the lattice constant (a_0) of the former is smaller than that of the latter. The estimated a_0 of the ScFeO₃ specimen is 0.954

Fig. 1. (Color online) X-ray photoelectron spectra of (a) Fe 2p electrons and (b) Sc 2p electrons of ScFeO₃ specimen.

Fig. 2. (Color online) X-ray diffraction pattern of $ScFeO_3$ specimen compared to those of Sc_2O_3 and Fe_2O_3 specimens.

nm, while that of the Sc₂O₃ specimen is 0.982 nm. Sc₂O₃ is known to be isostructural to Y_2O_3 ($a_0 = 1.081$ nm) [8] with the difference in a_0 being primarily ascribed to the difference in ionic radius [9] between Sc³⁺ (0.0745 nm) and Y³⁺ (0.09 nm) at the octahedral sites. Thus, the smaller a_0 of ScFeO₃ compared to Sc₂O₃ is partly attributable to the difference in ionic radius between Sc³⁺ and high-spin Fe³⁺ (0.0645 nm). Due to an ambient nature of the present sol-gel synthetic condition for the ScFeO₃ film, random distribution of Sc³⁺ and Fe³⁺ among the C₂ and S₈ sites is expected. The present XRD data are not in agreement with the prediction of a theoretical energy-band structure calculation [10], in which ScFeO₃ crystal prefers to be non-cubic structure, such as orthorhombic and rhombohedral.

In Fig. 3, magnetic hysteresis loop of the ScFeO₃ specimen measured by using VSM at room temperature is shown in comparison with that of the Fe₂O₃ specimen. The Sc_2O_3 specimen had a diamagnetic behavior. The observed saturation magnetization (M_S) of the Fe₂O₃ specimen is 3.7 emu/cm³, while for the ScFeO₃ specimen it is reduced to 2.6 emu/cm³. For the remanence M_r , the Fe_2O_3 specimen shows 1.2 emu/cm³ (32% of M_s), while the ScFeO₃ specimen shows 0.7 emu/cm³ (27 % of $M_{\rm S}$). On the other hand, the coercivity of the ScFeO₃ specimen is quite close to that of the Fe₂O₃ specimen, 0.6 kOe. The magnetizations observable from ScFeO₃ and Fe₂O₃ are primarily ascribed to net magnetic moment derivable from magnetic interactions among high-spin Fe³⁺ ions in the compounds. Such small magnetizations observed for both ScFeO₃ and Fe₂O₃ are interpreted as primarily due to antiferromagnetic alignment of neighboring Fe³⁺ ions [10,

Fig. 3. (Color online) Magnetic hysteresis loops of $ScFeO_3$ and Fe_2O_3 specimens.

11].

According to the result of a theoretical calculation of the degree of spin canting in antiferromagnetic ScFeO₃ [10], the canting angle was estimated to be 0.48°, where it is 180° for ferromagnetic spin alignment. The magnetic moment of high-spin Fe³⁺ ion is 5 μ_B . Thus, antiferromagnetic ScFeO₃ has net magnetic moment of $1.3 \times 10^{-2} \mu_B$ per formula-unit (f-u). Considering the unit-cell volume of the ScFeO₃ specimen, (0.954 nm)³, that contains eight Fe³⁺ ions and 1 $\mu_B = 9.27 \times 10^{-21}$ emu, the observed M_S (= 2.6 emu/cm³) for the ScFeO₃ specimen corresponds to $3.0 \times 10^{-2} \mu_B/f$ -u of the bixbyite lattice. The experimental result is seen to be in qualitative agreement with the theoretical prediction on spin-canted antiferromagnetic ScFeO₃ compound.

4. Conclusions

According to XRD analysis, ScFeO₃ compound maintains the bixbyite crystal structure of Sc₂O₃. The lattice constant of the bixbyite structure is reduced by 2.9 % due to the replacement of Sc by Fe. ScFeO₃ exhibits a similar magnetic hysteresis behavior to Fe₂O₃ with the value of M_S (= 2.6 emu/cm³) being smaller by 30 % than that of Fe₂O₃. The observed small magnetization in ScFeO₃ can be understood in terms of an antiferromagnetic ordering between neighboring Fe³⁺ ions with canted spin.

Acknowledgment

This work was supported by Incheon National University Research Grant in 2019.

References

- R. J. Gaboriaud, F. Paumier, and B. Lacroix, Thin Solid Films 601, 84 (2016).
- [2] S. Khan, H Choi, S. Y. Lee, K.-R. Lee, O. M. Ntwaeaborwa, S. Kim, and S.-H. Cho, Inorg. Chem. 56, 12139 (2017).
- [3] T. Danno, D. Nakatsuka, Y. Kusano, H. Asaoka, M. Nakanishi, T. Fujii, Y. Ikeda, and J. Takada, Cryst. Growth Des. 13, 770 (2013).
- [4] M. Catti, G. Valerio, and R. Dovesi, Phys. Rev. B 51, 7441 (1995).
- [5] J. K. Vassiliou, V. Mehrotra, M. W. Russell, R. D. McMichael, R. D. Shull, and R. F. Ziolo, J. Appl. Phys. 73, 5109 (1993).
- [6] K. J. Kim, J. Park, and J. Y. Park, J. Magn. 25, 453 (2020).
- [7] T. Kawamoto, K. Fujita, I. Yamada, T. Matoba, S. J. Kim, P. Gao, X. Pan, S. D. Findlay, C. Tassel, H.

- 99 -

Kageyama, A. J. Studer, J. Hester, T. Irifune, H. Akamatsu, and K. Tanaka, J. Am. Chem. Soc. **136**, 15291 (2014).

- [8] A. J. M. Ramirez, A. G. Murillo, F. J. C. Romo, J. R. Salgado, C. L. Luyer, G. Chadeyron, D. Boyer, and J. M. Palmerin, Thin Solid Films 517, 6753 (2009).
- [9] R. D. Shannon, Acta. Cryst. A 32, 751 (1976).
- [10] B. G. Kim, M. Toyoda, J. Park, and T. Oguchi, J. Alloys Comp. 713, 187 (2017).
- [11] J. Fischer, M. Althammer, N. Vlietstra, H. H. Sebastian, T. B. Goennenwein, R. Gross, S. Geprags, and M. Opel, Phys. Rev. Applied 13, 014019 (2020).