Characterization of Cu²⁺ Impurity Ion in K₂SnCl₆:Cu Single Crystal

Tae Ho Yeom* and Soo Hyung Lee

Department of Laser and Optical Information Engineering, Cheongju University, Cheongju 28503, Republic of Korea

(Received 1 April 2018, Received in final form 16 May 2018, Accepted 17 May 2018)

K₂SnCl₆ single crystals doped with Cu were grown by the evaporation of saturated solution. The electron magnetic resonance (EMR) of the Cu²⁺ ion in the crystal has been investigated by using an X-band spectrometer. The rotation pattern in the crystallographic plane together with spin Hamiltonian parameters of Cu²⁺ ion in K₂SnCl₆:Cu single crystal shows that the local site symmetry of the Cu²⁺ ion is cubic at room temperature. The calculated spectroscopic splitting factor *g* of Cu²⁺ impurity ion is 2.1908(±0.0007). The hyperfine constants of Cu²⁺ impurity ion due to the ⁶³Cu and ⁶⁵Cu isotopes in K₂SnCl₆:Cu crystal are 0.83(±0.01)×10⁻⁴ cm⁻¹ and 0.89(±0.01)×10⁻⁴ cm⁻¹, respectively. It turns out that the Cu²⁺ ion substitutes for the K⁺ ion without any nearby charge compensation.

Keywords : K₂SnCl₆ single crystal, Cu²⁺ EMR, local site symmetry, substitutional site

1. Introduction

 K_2SnCl_6 is the prototype of the family of hexahalogenometallates of the general type A_2BX_6 which crystallizes at room temperature in the cubic anti-fluorite structure with space group Fm3m [1]. The bonding between A^+ and BX_6^{2-} octahedron is ionic and within the BX₆ octahedron covalent bonding dominates between B metals and X halogens. The K^+ ion cages occupied by the BX_6^{2-} octahedra per unit cell in the hexahalogenometallates are alternately half occupied.

The electron configurations of the B^{4+} metal ions decide the magnetic structure of the compounds and also significantly influence the mechanism of the metal-ligand binding in the BX₆ octahedron. The investigations of the magnetic properties [2-4] and the bonding mechanisms [5, 6] of the single crystal were the essential theoretical and experimental parts of research. The results of the thermal and spectral measurements [7] and the study of the lattice dynamics have provided important information on the phase transitions mechanism and the lattice dynamics.

The mixed crystals of these hexahalogenometallates compounds have been investigated thoroughly especially with NQR and Raman scattering [8-10]. However, there are many difficulties in understanding the properties of the local structure in detail, particularly, in the temperature region around the structural phase transitions as well as in the intermediate phase that is in the narrow temperature region between the high- and low-temperature phases. Around the phase transition region, the dynamic and static properties of the lattice vary abruptly with temperature. Complex phenomena also come out through the overlap of many different effects of the lattice dynamics. The phase transition of K_2SnCl_6 has been investigated in detail [11, 12].

Electron magnetic resonance (EMR) gives information on the local structure and site location of point defects as well as impurity ions. In these study, EMR spectra of Cu^{2+} ion in K₂SnCl₆:Cu single crystal obtained at an X-band are analyzed in terms of the effective spin Hamiltonian with the spin S = 1/2. The local site symmetry as well as EMR parameters of Cu^{2+} impurity ion is determined. The substitutional site of the Cu^{2+} ion is also discussed by considering the ionic size, charge state, and microscopic site symmetry.

2. Crystal Structure and Experimental Aspects

The K₂SnCl₆ crystallize in the cubic with space group O_h^5 /Fm3m consisting of non-connected SnCl₆-octahedra on a face centered cubic (fcc) lattice and K atoms on a primitive cubic lattice with half the lattice constant at

[©]The Korean Magnetics Society. All rights reserved. *Corresponding author: Tel: +82-43-229-8555 Fax: +82-43-229-8498, e-mail: thyeom@cju.ac.kr

Fig. 1. Unit cell of cubic K_2SnCl_6 single crystal. The black circles denotes the K^+ cation and the large open circles the octahedral $(SnCl_6)^{2-}$ anion.

room temperature [13]. The unit cell, i.e. primitive unit cell has four molecules with nine atoms per molecule (two K, one Sn, and six Cl atoms) as shown in Fig. 1. The basis consists of a $(SnCl_6)^{2-}$ complex ion and two K⁺ ions.

The crystal structure is an fcc with lattice constant a = 0.9986 nm at 280 °C. The bond lengths between atoms are Cl-Sn = 0.24106 nm, Cl-K = 0.35301 nm, Cl-Clⁿ = 0.34091 nm, Cl-Clⁿⁿ = 0.36491 nm at room temperature. The two phase transition temperatures at $T_{c1} = 260.5$ K and at $T_{c2} = 255$ K of K₂SnCl₆ are found by X-ray neutron diffraction with single crystals and powders [14]. The crystal structure of high temperature phase above T_{c1} is cubic (O_h^5) . On cooling the crystal undergoes two successive phase transitions into an orthorhombic (D_{2h}^2) above T_{c2} and a monoclinic phase (C_{2h}^5) below T_{c2} .

The host crystal K_2SnCl_6 doped with the Cu²⁺ ion was grown by the vaporization of saturated solution. Potassium chloride (KCl) was melted in distilled water with 0.1 n HCl to yield saturated aqueous solution. The solution was then added to hydrogen hexachlorostannate (H₂SnCl₆) stoichiometrically to precipitate the powder of potassium hexachlorostannate (K₂SnCl₆).

The color of the powder obtained was snow-white. The powder was dissolved in distilled water and evaporated slowly to obtain single crystal. The K_2SnCl_6 single crystal was grown up in 0.5-5 mm after a few days. The host crystal K_2SnCl_6 is doped with Cu^{2+} (0.9 mol%).

We used an X-band JEOL (JES-RE2X) EMR spectrometer to get the Cu^{2+} EMR spectra in K_2SnCl_6 single crystal. The rotation patterns of the Cu^{2+} resonance fields

Fig. 2. (Color online) Typical EMR spectra of Cu^{2+} ion in the K₂SnCl₆:Cu single crystal at room temperature. The resonance spectra consist of isolated Cu^{2+} EMR center with two sets of hyperfine structures due to the ⁶³Cu and ⁶⁵Cu isotopes and clustered Cu^{2+} EMR center.

in the crystallographic planes were obtained at microwave frequency of 9.446 GHz. Only one set of resonance line was measured for Cu²⁺ in K₂SnCl₆:Cu single crystal. This EMR result agrees with the NQR frequency with a single line above $T \ge T_{c1}$ [15, 16].

Figure 2 shows a typical EMR spectra of Cu²⁺ impurity ion in K₂SnCl₆:Cu single crystal at room temperature. The fine structure of Cu2+ ion consists of only one resonance line because the effective spin S of the ion is 1/2. The fine structure is split into four lines each by the hyperfine interaction of 63 Cu (I = 3/2, 69.17 % abundance) and 65 Cu (I = 3/2, 30.83 % abundance) nuclei, respectively. The resonance spectra in Fig. 2 discussed later consist of isolated Cu²⁺ EMR center with two sets of hyperfine structures (8 lines) due to the 63Cu and 65Cu isotopes as well as clustered Cu²⁺ EMR center. We could not find any angular variation of electron magnetic resonance spectra for Cu²⁺ ion on the crystallographic *aa*-plane. This indicates that the local site symmetry of the Cu²⁺ ion K₂SnCl₆:Cu single crystal is cubic. From the rotation pattern, EMR parameters of the Cu2+ ion were determined.

3. Effective Spin Hamiltonian and Analysis

The Cu²⁺ ion has the electron configuration $3d^9$ and is a *D*-state ion characterized by S = 1/2 and the ground multiplet ${}^2D_{5/2}$. The hyperfine structure (zero field splitting) results from the interaction between the nuclear spins of 63 Cu and 65 Cu isotopes and their electronic spin. The

experimental resonance fields can be analyzed with an effective spin Hamiltonian [17, 18]:

$$H = H_Z + H_{hyp} = \mu_B \boldsymbol{B} \cdot \boldsymbol{g} \cdot \boldsymbol{S} + \boldsymbol{S} \cdot \boldsymbol{A} \cdot \boldsymbol{S}, \qquad (1)$$

where the terms H_Z are the Zeeman interaction and H_{hyp} the hyperfine interaction. μ_B is the Bohr magneton, **B** is the applied magnetic field, **g** is the spectroscopic splitting tensor, **S** is the electron spin, and **A** is the hyperfine tensor.

Magnetic resonance lines due to the hyperfine structure of Cu^{2+} in K₂SnCl₆ recorded in the crystallographic planes are used for calculating the spectroscopic splitting parameter *g* and the hyperfine constant *A*. The calculated *g* value of the isolated Cu^{2+} impurity ions is 2.1908(±0.0007) as shown in Table 1, where spectroscopic splitting parameter *g* is isotropic. The impurities with no neighboring Cu^{2+} impurity ions within the range of interaction are denoted as isolated Cu^{2+} ions.

The well-resolved resonance spectra arise from the magnetically diluted Cu^{2+} impurity ions (isolated Cu^{2+} EMR center) in the host lattice generally. However, the eight-line spectra were not resolved well in our K₂SnCl₆:Cu crystal doped with 0.9 mol% Cu concentrations as shown in Fig. 2. At 0.9 mol% Cu concentrations, the intensity of hyperfine structure of isolated Cu^{2+} impurity ions is very weak and broad signal becomes dominant. These broad-line spectra in Fig. 2 can be explained by a new Cu center (clustered Cu^{2+} EMR center) arising from the higher Cu concentrations. The broad resonance line due to clustered Cu impurity ions is strongly influenced by their Cu magnetic moments between clustered Cu ions.

The observed hyperfine resonance lines of Cu^{2+} impurity ion in K₂SnCl₆:Cu crystal are very weak, but their presence is indicated clearly. Two sets of hyperfine lines due to the isotopes ⁶³Cu (I = 3/2) and ⁶⁵Cu (I = 3/2) are indicated by the four red-colored bars and by the four blue-colored bars in Fig. 2, respectively. The last term in the Hamiltonian eq. (1) represents the hyperfine interaction. Since the hyperfine interaction term is known to be much smaller than the Zeeman term in Eq. (1), it is sufficient to regard it as the first-order perturbation to the Zeeman term. The calculated hyperfine constants of Cu²⁺ impurity ion due to the ⁶³Cu and ⁶⁵Cu isotopes in K₂SnCl₆:Cu crystal are $A^{63} = 0.83 \ (\pm 0.01) \times 10^{-4} \ \text{cm}^{-1}$ and $A^{65} = 0.89 \ (\pm 0.01) \times 10^{-4} \ \text{cm}^{-1}$ as shown in Table 1, respectively. The hyperfine constants are isotropic within the experimental accuracy both ⁶³Cu and ⁶⁵Cu nuclei in K₂SnCl₆ crystal. The ratio $A(^{65}Cu)/A(^{63}Cu)$ for Cu²⁺ ion in K₂SnCl₆ is 1.0723. This value (1.0723) is similar to the ratio of magnetic moments $\mu(^{65}Cu)/\mu(^{63}Cu) = 1.0712$ [19], as it ought to be.

To identify the substitutional site location of the Cu²⁺ ion in the K₂SnCl₆ single crystal, several points are considered as follows. First, the ionic sizes of Cu²⁺ and host ions in the K₂SnCl₆ crystal are compared in Table 2. The ionic radius of the Cu^{2+} ion is about 0.071-0.087 nm depending on the coordination number. It is reasonable to assume that Cu^{2+} ion occupies the K^+ ion instead of the Sn^{4+} because the ionic radius of the K⁺ ion (0.151-0.152) nm) is larger than that of the Sn^{4+} ion (0.069-0.083 nm). On top of that, the charge state of the Cu^{2+} ion is closer to the K^+ ion rather than that of the Sn^{4+} ion. Therefore, the Cu^{2+} ion can substitute for the K⁺ ion with remotely charge compensation. Suppose that Cu²⁺ ion resides at the Sn⁴⁺ site, which is unfavorable from the ion size, local distortion at the Sn⁴⁺ site would arise because the ionic radius of the Sn^{4+} is smaller than that of the Cu^{2+} ion. The cubic local site symmetry of the Cu²⁺ ion obtained from our EMR analysis favors the assumption that the Cu²⁺ ion occupies the K⁺ ion at the cubic symmetry. Therefore, it is reasonable to conclude that the Cu²⁺ ion replaces the K⁺ ion without local charge compensation at the nearby surroundings.

4. Results

 K_2 SnCl₆ single crystals doped with Cu²⁺ ion were grown by the vaporization of saturated solution. The rotation

Table 1. The spectroscopic splitting parameter g and hyperfine constants A of the isolated Cu^{2+} impurity ion in a K₂SnCl₆:Cu single crystal. The unit of A is 10^{-4} cm⁻¹.

g-factor	$A(^{63}Cu)$	$A(^{65}Cu)$	$A(^{65}Cu) / A(^{63}Cu)$	$\mu(^{65}Cu) / \mu(^{63}Cu)$
2.1908(±0.0007)	0.83(±0.01)	0.89(±0.01)	1.0723	1.0712

Table 2.	The	ionic	radii	of th	ne Cu ²	+ ion	and	the	host	cations	in	the	K ₂ SnCl ₆	single	crystal.
----------	-----	-------	-------	-------	--------------------	-------	-----	-----	------	---------	----	-----	----------------------------------	--------	----------

ions	Cu	1 ²⁺	k	+	Sn ⁴⁺		
Coord. Number	4	6	4	6	4	6	
radii (nm)	0.071	0.087	0.151	0.152	0.069	0.083	

patterns of Cu²⁺ ion are observed on the crystallographic *aa*-plane at room temperature. The hyperfine constants *A* as well as the spectroscopic splitting factor *g* of the Cu²⁺ EMR center have been determined with the effective spin Hamiltonian. The isotropic *g* and *A* values together with rotational patterns of Cu²⁺ impurity ion show that the Cu²⁺ ion reside at the cubic symmetry site. This EMR study enables us to conclude that the local site symmetry of the Cu²⁺ center in K₂SnCl₆ single crystal is cubic. It is proposed that the Cu²⁺ ion in the crystal substitutes for the K⁺ ion without local charge compensation at surroundings close by.

Acknowledgement

We would like to appreciate the crystal growing and helpful discussions of Professor Y. M. Seo, D. Choi, and S. Song.

References

- [1] R. G. Dickinson, J. Am. Chem. Soc. 44, 276 (1922).
- [2] J. H. M. Thornley, J. Phys. C 1, 1024 (1968).
- [3] A. J. Lindop, J. Phys. C.: Sol. State Phys. 3, 1984 (1970).
- [4] A. Abragam and B. Bleaney, Electron paramagnetic resonance of transition ions (Clarendon Pres, Oxford) 1970.
- [5] T. L. Brown, Jr. W. G. McDugle, and L. G. Kent, J. Am. Chem. Soc. 92, 12 (1970).

- [6] D. Nakamura, R. Ikeda, and M. Kubo, Co-ordination Chemistry Revices 17, 281 (1975).
- [7] R. L. Armstrong, J. D. Mintz, and M. D'Iorio, Phys. Rev. Lett. 44, 747 (1980).
- [8] C. Dimitropoulos, J. J. Van der Klink, J. Pelzl, M. Regelsberger, and K. Rossler, Proc. Faraday Symposium 13 Pulsed NMR in Solids (1978, ed. D. A. Young).
- [9] J. J. Van der Klink and C. Dimitropoulus, J. Mol. Str. 58, 359 (1980).
- [10] J. Pelzl, V. Waschk, Y. M. Seo, and C. Dimitropoulos, J. Mol. Str. 111, 363 (1983).
- [11] A. Sasane, D. Nakamura, and M. Kubo, J. Mag. Res. 3, 76 (1970).
- [12] K. R. Jeffrey, J. Mag. Res. 7, 184 (1972).
- [13] R. G. Dickinson, J. Am. Chem. Soc. 44, 276 (1922).
- [14] H. Boysen, J. Ihringer, W. Prandl, and W. Yelon, Solid State Commun. 20, 1019 (1976).
- [15] A. Sasane, D. Nakamura, and M. Kubo, J. Mag. Res. 3, 76 (1970).
- [16] K. R. Jeffrey, J. Mag. Res. 7, 184 (1972).
- [17] S. Altschuler and B. M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements (Wiley, New York, 1974) Chap. 3.
- [18] S. K. Misra and C. Rudowicz, Phys. Stat. Sol. (b) 147, 677 (1988).
- [19] CRC Handbook of Chemistry and Physics, 76th ed., edited by D. R. Lide (CRC Press, Boca Raton, NY, London, Tokyo, 1995-1996), p 11-49.