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In this study, a multi-physics finite element model is adopted to investigate the effect of geometric discontinuity

and stress concentration on the magnetic memory method (MMM). We propose a quadratic equation to fit the

stress magnetization constitutive relation in the model. The relation can be used to predict the abnormality of

the geometric discontinuity and the stress concentration. Simulation results show that the magnetization on the

wall of the groove is the weakest and that on the bottom of the groove is the maximum. The free boundary con-

dition releases the stress concentration of the defect. Although the magnetization induced by stress concentra-

tion is weaker than geometric discontinuity, the signal characteristics can still be used to evaluate the defect and

the stress. This work proves that the MMM is a potential method for stress distribution assessment.
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1. Introduction

As a comparative novel non-destructive testing (NDT)

method, the magnetic memory method (MMM) is the

only potential NDT technology for evaluating stress

concentration [1]. Thus, the MMM is widely used in

various industries, such as rails, pipelines, and weld

structures [2, 3], to diagnose the early damage of the

structure.

This method is regarded as a passive magnetic flux

leakage (MFL) method, and spontaneous magnetization

results from the magneto mechanical (Villari) effect.

However, many factors determine the Villari effect [4-7],

including the geomagnetic field, the initial stress state, the

chemical composition, the microstructure, the geometry,

and the dimension of samples. Many experiments have

been carried out to clarify the relationship between all

these factors and the self-magnetic leakage field (SMLF).

Various defects were prefabricated to induce local stress

concentration, and then the distribution of the SMLF

induced by stress was measured [8-10]. The magnetic

signals are the result of the combined effect of geometric

discontinuity, stress concentration, and other factors [11].

In published literature, since the geomagnetic field, initial

magnetic state, and chemical composition of samples are

known in advance, the geometric discontinuity and the

stress concentration are the main factors that determine

the leakage of the magnetic field.

Some researchers focused on the effect of geometric

discontinuity [12]. Wang and Yao et al. [13] investigated

the distribution of MMM signals based on the magnetic

charge theory. Later, they performed a 3D finite element

(FE) analysis to capture the circular and square plastic

zones by calculating the MMM signals of the specimen

[14]. They just considered the specimen as a permanent

magnet and ignored the non-uniform magnetization caused

by the stress concentration. However, the magnetization

induced by stress is non-uniform, which is very different

from the traditional MFL method.

On the other hand, some researchers claimed to have

found a direct relationship between residual stress and

the magnetic field gradient [15]. Other studies [16]

reconstructed the experiment and proved that a bidirec-

tional correlation between the magnetic field gradient and

the local stress level cannot be determined because of

several inseparable factors. These contradictory statements

indicate that the mechanism of the MMM has not been

satisfactorily investigated [1].

As a static harmonic field, the magnetic field distribution

is mainly determined by Maxwell’s equations and the
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constitutive relation. Establishing the quantitative relation-

ship between the shape and size of the defect and the

magnetic signals is the key issue of the MMM. Several

models, such as the Jiles–Atherton (J–A), Preisach, and

Hauser models, can predict the magnetization behavior

quantitatively based on a solution of nonlinear differential

equations [17, 18]. Shi [19] proposed a nonlinear con-

stitutive relation of the magneto mechanical model and

conducted a study with new findings of the applicability

of the MMM. The results of the improved model are

consistent with the experimental data and demonstrate its

feasibility for early diagnosis. The model can clarify

some complex phenomena of the MMM signals [20]. 

However, in practical applications, the environment

around a specimen is complicated. Few distinctions have

been discussed between stress concentration and geo-

metric discontinuity. This paper presents a FE analysis of

the stress concentration and geometric discontinuity of

MMM signals during a tensile experiment. Section 2

presents the basic theory of the model used in this study.

Then, the boundary and other details are introduced and

the model is verified by experiment data in Section 3. In

Section 4, the study performed to reveal the different

effects of geometric discontinuity and stress concentration

is discussed in detail. Finally, the conclusions are presented

in Section 5.

2. Basic Theory

2.1. Magneto-mechanical model

The magnetic field in space can be described by

Maxwell’s magnetic equations.

(1a)

(1b)

where H is the intensity of the magnetic field, J is the

current density, and B is the magnetic flux density. 

In the absence of free current, J equals zero. The

governing equations can be written as follows by trans-

forming Maxwell’s equations with the use of the mag-

netic scalar potential (φm). 

, in material (2a)

, in air (2b)

where φm is defined by H =  .

On the interface of two different materials, the follow-

ing boundary conditions are satisfied:

, (3a)

, (3b)

where n is the outside unit vector normal to the surface of

the ferromagnetic material.

The divergence of magnetization ( ) is the mag-

netic source. Then, the magnetic field distribution on the

ferromagnetic material surface is determined by the source

and boundary conditions.

The magnetization caused by stress is described as a

magnetostriction constitutive relation. The magnetization

of the material is dominated by an effective field, He,

which can be expressed as

(4)

where α quantifies the amount of domain coupling, and

Hσ represents the equivalent magnetic field induced by

the elastic stress and can be expressed as follows:

(5)

where λ is the magnetostriction and varies with the tensile

stress. The exact partial differential should be determined

with the measured magnetostriction curve. An empirical

model can be used to simulate the relationship between

magnetostriction and magnetization, and the expression

that ignores the higher-order term is

(6)

where 0, 11, and 12 are stress-dependent coefficients and

can be determined through fitting the measured magneto-

striction curve.

Hence, the stress-induced effective field can be rewritten

as 

. (7)

The anhysteretic magnetization curve, Man, can be ex-

pressed by a modified Langevin equation as follows:

(8)

where Ms is the saturation magnetization, and a is the

interaction coefficient of the domain wall.

Hysteresis magnetization M can be expressed in differ-

ential form:

(9)

Here, E is Young’s modulus, and ξ is a coefficient related

to energy density.
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The solution of Man under different stresses can be

obtained from Eqs. (4)-(8) by using a root-finding algorithm,

such as the fixed point iterative method. Then, hysteresis

magnetization M can also be obtained by the difference

method. In this way, the nonlinear M–σ relation can be

calculated step by step.

The parameters of the J–A model are selected as the

reported results [21]: γ11 = 1.5 × 10−18 A−2m2 and γ12 =

4.17 × 10−27 A−2m2Pa−1. 

To simplify the calculation, the constitutive relation

between magnetization and stress can be fitted by a quadratic

equation. 

In this formula, coefficients a0, b0, and c0 can be obtained

from previously reported results [22]. Thus, a0 is 0.555 A/

mMPa−2, b0 is 0.222 A/mMPa−1, and c0 is 0.335 A/m. The

residual standard deviation (measurement vs. fitting) is

0.408, and the R2 (coefficient of determination) is 0.961.

This fitting curve is applied in the FE model. Then, the

magnetic field can be calculated. 

2.2. FE Simulation model

The system, modeled in COMSOL Multiphysics, consists

of a specimen with a groove placed in a sphere box filled

with air, as shown in Fig. 1(a). The dimension of the

specimen is shown in Fig. 1(b). The material of the

specimen is 0.45 % carbon steel. Table 1 shows the com-

ponents of this material.

The model involves two physical fields: the stress field

in the solid mechanic’s module and the magnetic field in

the electromagnetic field module. The stress field is

calculated using the mechanical equilibrium equation

with the parameters from the material properties listed in

Table 2. 

The electromagnetic field distribution is calculated by

Maxwell’s magnetic equations, Eqs. (1)-(3). On the outside

boundary of the surrounding air box, the magnetic scalar

potential (φm) could be considered zero because the

diameter of the air box is large enough. On the air and

specimen interface, the continuous boundary conditions

are satisfied. The other parameters used in the model are

listed in Table 3. 

The initial magnetization of each mesh in the FE model

is assumed to zero. After loading, the magnetization is

determined by its stress, which is calculated from the

constitutive M–σ curve. The magnetic fields generated by

each mesh are merged to form the magnetic field around

the specimen. Then, the MMM signals are extracted from

the solution data along the scanning line as shown in Fig.

1(b).

3. Experiments

Experiments were carried out to verify the simulation

model. The specimens for the verification experiments

M = a0
2
 + b0 + c0

Fig. 1. Schematic of the FE model: (a) Specimen and sur-

rounding air; (b) Geometry dimension of the specimen with a

groove.

Table 1. Chemical composition of 0.45 % C steel (wt %).

Material C Si Mn S P

0.45 % C steel 0.42 %–0.50 % 0.17 %–0.37 % 0.50 %–0.80 % ≤ 0.035 % ≤ 0.035 %

Table 2. Parameters used in the simulation model.

Specimen Surrounding air

Elasticity modulus 200 GPa /

Poisson’s ratio 0.3 /

Table 3. Geometry dimensions used in the FE model.

Parameters Range

Width of groove (mm) 4 8 12 16 20

Depth of groove (mm) 2 3 4 5 6

Tip curvature of groove (mm) 0.5

Length of specimen (mm) 200

Thickness of specimen (mm) 30

Radius of airbox (mm) 400
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were made of 0.45 % C steel. The shape and dimension

of the specimens were based on the simulation model in

Fig. 1(b).

The tension tests were carried out on an SDS-100

testing machine. Before the experiments, the specimens

were demagnetized to eliminate the initial magnetic field

caused by the initial stress. Then, the specimens were

clamped vertically on the SDS-100 testing machine, with

a peak capacity of 100 kN. Axial tensile loads were

applied to the specimens at 10 kN increments.

During testing, the specimens were first loaded to a

predetermined level and then taken off from the machine

and arranged along the N-S direction on a graph paper,

which was fixed on a horizontal working plane. The plane

had some marked points to ensure the fixed position of

each measurement. The magnetic signals were scanned

by a 3-axis electronic platform with a given lift-off. The

precision of the platform was 0.018 mm/300 mm. The

measuring range was 0.3 m × 0.3 m × 0.4 m. The theore-

tical resolution of the stepper motor was 1.25 μm, and the

positioning accuracy of the platform was 0.02 mm. The

scanning speed was 2 mm/s. The MMM signals were

measured by TSC-2M-8 along the scanning line as shown

in Fig. 1(b). The probe accuracy was 1 A/m. 

A preparatory experiment was performed to investigate

the effect of the applied tensile stress on the surface

magnetic field measurement results. A healthy specimen

with no groove was tensioned with a stress increment of

10 kN until 50 kN. At each level, the magnetic field was

measured. 

4. Results and Discussion

4.1. Model validation

The experimental MMM signals are shown in Fig. 2.

The normal components Hp(y) along the scanning line are

almost linear, and the slope value of the curves increases

with the stress. 

Figure 2 shows that the prediction is consistent with the

experimental data. Therefore, the prediction can satis-

factorily describe the variation of the magnetic field of

the specimen. This result also indicates that the slope of

Hp(y) reflects the magnetization of the specimen, which

cannot be removed as it is not only related to the specimen

geometry as in Ref. [1].

4.2. Comparison of stress and magnetic distributions

Around the groove, a stress concentration zone (SCZ) is

generated in the specimen when a tensile load is applied

along the axis. The stress distribution is shown in Fig. 3.

Only the area near the groove is plotted. Fig. 3 reveals the

location of the SCZ with a maximum stress of 392 MPa

and nominal stress of 111 MPa. The stress concentration

factor was calculated to be 3.53, which is consistent with

the analysis results of elastic mechanics. The area beyond

the yield limit of the material (360 MPa) is very small,

and the effect of plastic deformation on the magnetic

signal can be ignored.

The magnetic flux density B distribution caused by

stress is shown in Fig. 4. An abnormality of B can be

observed near the groove. The maximum magnetization

area is located at the bottom of the groove. And the

magnetization on the side of groove is weakest, for the

side is the free boundary of the stress field as shown in

Fig. 3. This conclusion is completely different from the

hypothesis in the magnetic charge theory that the magnetic

charge is distributed on the side of the groove [19]. 

4.3. Comparison of geometry defect and stress distri-

bution

The uniform magnetization provided in the SMFL

method was also simulated in the same COMSOL model

to investigate the impacts of the geometric discontinuity

and stress distribution. The distribution is shown in Fig. 5.

The magnetic field distribution is inconsistent with the

stress distribution in Fig. 3, indicating that the magnetic

Fig. 2. Comparison of magnetic memory signals predicted by

the simulation model and experiments. Fig. 3. Stress (Von mises) distribution with a tensile load of 20

kN.
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distribution is more complicated than and different from

the stress distribution due to the geometry discontinuity.

To understand the impact of the geometric defect and

stress distribution of the groove, we plot the curves of the

tangential signals Hx and normal signals Hy variation

along the scanning line in Fig. 6. As expected, the Hx

signal shows a unipolar behavior, while the Hy signal

shows a bipolar behavior. The peak value of the Hx com-

ponent corresponds to the location of the groove. This

behavior is consistent with the previous experimental

observation [16]. Furthermore, the two types of curves

have the same trend. It can be seen that an obvious

decrease can be observed for the stress magnetization

when compared to the geometric discontinuity, and the

abnormality due to geometric discontinuity is even stronger

than those due to stress concentration, which indicates

that the stress concentration may decide the weak magnetic

leakage field. 

4.4. Analysis and discussion of the influence of geom-

etry and stress

To present quantitative results about the signals, two

characteristic parameters are defined, namely, the peak-

peak amplitude Sp-p and peak-peak width wp-p of the

normal component, as shown in Fig. 7. 

Figure 8 shows the variation of Sp-p with the increase of

the groove depth. The groove depth has a remarkable

impact on the magnetic field amplitude Sp-p for both stress

concentration and geometric discontinuity. However, the

value of Sp-p and its increment caused by geometry dis-

continuity are distinctly higher than those by stress con-

Fig. 4. Distribution of magnetic field (a) norm B, (b) normal

By, and (c) tangential Bx caused by stress.
Fig. 5. Distribution of magnetic field (a) norm B, (b) normal

By, and (c) tangential Bx caused by a geometric defect.
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centration.

Furthermore, Sp-p decreases with the increase of width

under a constant depth on the condition of stress concent-

ration. However, it increases with the increase of width on

the condition of geometric discontinuity. This is because

that, with the increase of the width, the slope of normal

component of MMM signal of the entire specimen weakens

the characteristic parameters Sp-p on the condition of stress

concentration. However, on the condition of geometric

discontinuity, for the value of Sp-p is much larger, the slop

of MMM signal of the entire specimen can be ignored,

which has little effect on the variation of Sp-p. 

Figure 9 shows the wp-p variation with the increase of

the groove depths. The groove depth has a slight influence

on the peak-peak width wp-p due to the stress concent-

ration, as shown in Fig. 9(a). In contrast, the groove depth

has little influence on geometric discontinuity. 

In the traditional MFL method, magnetic charges are

assumed to be concentrated in the walls of the breaking

defect. Thus, the wp-p remains constant with the depth.

However, the stress is released in the walls of the groove,

and the main reason for the magnetic leakage field is the

magnetization caused by stress concentration at the

bottom of the groove. Since the measured signals come

Fig. 6. Comparison of magnetic memory signals due to geom-

etry discontinuity and stress magnetization: (a) normal signals;

(b) tangential signals.

Fig. 7. Curves and parameters of the normal component.

Fig. 8. Variation of Sp-p with different groove depths by (a)

stress concentration and (b) geometric discontinuity.
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from the surface of the specimen, wp-p can be seen as a far

field characteristic of a defect in this case. Previous

studies indicated that the peak-peak width increases with

the increase of the lift-off value, when the lift-off value is

not very small [23], which explains why wp-p increases

with the increase of depth.

The numerical results show that stress concentration

and geometric discontinuity can also affect the MMM

signal and have a similar variation trend. In this study,

maximum stress was observed at the bottom of the groove.

Meanwhile, the free boundary condition releases the stress

concentration of surface of the defect. This indicate that

the geometry discontinuity is the main factor that deter-

mines the distribution of the magnetic field. The non-

uniform magnetization induced by stress weakens the

magnetic leakage field. It also reduces the peak-peak

amplitude Sp-p and increases the peak-peak width wp-p. The

proposed simulation model further explains the complex

relation of stress concentration and geometry shape and

promotes the application of the MMM.

5. Conclusions

In this work, the MMM model based on the magneto

mechanical effect was introduced and verified. A multi-

physics FE model was adopted for a grooved specimen to

study the effect of geometric discontinuity and stress

concentration on the MMM signals. The quantitative

distinction was investigated. The following conclusions

are drawn from this study: 

(1) This model can simulate the magnetic abnormality

of geometric discontinuity and stress concentration. The

results of this research would be useful for the reliable

and accurate damage estimation of engineering structures

using the MMM technique.

(2) The calculation results show that the magnetization

on the wall of the groove is the weakest and that on the

bottom of the groove is the maximum. These results are

inconsistent with the magnetic charge theory of the tradi-

tional MFL method.

(3) Geometric discontinuity is the main reason of the

magnetic leakage field. The free boundary condition releases

the stress concentration of the defect. The non-uniform

magnetization induced by stress weakens the magnetic

leakage field. It reduces the peak-peak amplitude Sp-p and

increases the peak-peak width wp-p.

(4) Under stress magnetization, the signal amplitude

decreases considerably. Although the stress distribution

weakens the magnetic leakage field, the signal characteristic

can still be used to evaluate the defect and the stress.

Thus, MMM is a potential method for stress distribution

assessment.
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