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The objectives of the research are to explored the heat and mass transport over a paraboloid surface of revolu-

tion by taking the effects of Lorentz force, resistive heating and internal heat source. The dimensionless version

of the model was attained via similarity transformations. Then, for solution purpose, RK scheme is utilized and

performed computations for the flow fields. The influence of different physical quantities on the flow charac-

teristics described comprehensively via graphs. It is examined that the stretching index parameter m opposes

the fluid velocity and the temperature enhances for Eckert number. Moreover, significant impacts of the

Schmidt number are observed for mass transfer gradient. 
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1. Introduction

The heat and mass transfer in streamline flow of viscous

incompressible fluid under the influence of Lorentz force,

resistive heating and heat generation/absorption over a

paraboloid surface of revolution is received much interest

of the researchers. Such flows extensively exist over a

bullet and bonnet of the vehicles.

The magnetized laminar flow is significant from

industrial applications point of view. These are in solar

collectors, aeronautical engineering and magnetospheres.

Therefore, the analysis of magnetized flows attained

much interest of the researchers due to significant uses in

various industries like oil purification, pumps and pro-

duction of heat exchangers etc. 

The flow of Newtonian as well as non-Newtonian fluids

is significant over a paraboloid surface of revolution.

Therefore, the researchers turned their attentions towards

the analysis of such flows by incorporating the influence

of applied magnetic field, radiative heat flux, resistive

heating, internal heat source, thermophoretic and Brownian

motion parameter in the constitutive governing models. 

Recently, Reddy et al. [1] were reported the flow

characteristics over a paraboloid surface of revolution.

They explored the impacts of viscous dissipation in the

flow behavior of Fe3O4-Casson nanofluid over a convective

geometry and made comprehensive discussion based on

the reported results. Moreover, they computed the numeric

results for the shear stresses and local rate of heat transfer.

In 2017, Koriko et al. [2] was perceived the flow of

micropolar fluid over a paraboloid geometry for auto-

catalytic chemical reaction. They found the similarity

solutions for the model and analyzed the velocity and

temperature behavior via graphs. Ajayi et al. [3] was

explored the boundary layer for Casson fluid over a

paraboloid geometry by incorporating the effects of

viscous dissipation and radiative heat flux. The theoretical

analysis for the flow of Carreau and Casson fluids in the

existence of heat generation/absorption over a paraboloid

geometry was discussed in [4]. The comparison for the
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velocity and temperature was made in the presented work

for various flow quantities. 

Recently, Abegunrin et al. [5] perceived the flow behavior

of Eyring Powell fluid over a revolving paraboloidal

sheet. The study is conducted in the presence of chemical

reaction effects. Crane [6] was perceived the flow past a

stretchable surface. They comprehensively reported the

flow field under the variations of different parameters.

Later on, the effects of various parameters on the heat and

mass transfer were described in [7]. The flow characteri-

stics over a continuously stretchable and rotating surfaces

was presented in [8] and [9], respectively. They perceived

the impacts of an interesting parameter  in the flow field

that is the quotient of rotating surface to the stretching

rate of the surface. In 2006, Sharidan et al. [10] explored

the unsteady Falkner flow over a porous surface. The

influence of concentration gradients in three-dimensional

flow over radiative sheet was examined by Reddy et al.

[11]. They discussed the influence of Lorentz force,

internal heat source and thermophoretic parameter in the

flow fields. The heat transfer analysis for the flow over a

porous stretchable surface, magnetized flow over a bi-

laterally stretching surface, the flow behavior of unsteady

dissipative flow of non-Newtonian fluid and unsteady

flow of Casson fluid past a stretching surface by incorpo-

rating the effects of thermal radiations, slip and convec-

tive boundary conditions were perceived in [12-15],

respectively. The Casson fluid characteristics past an

inclined stretchable plane described [16]. The influence of

thermal radiations and chemical reaction are focused in

his study. Furthermore, useful analysis for the Newtonian

as well as non-Newtonian fluids under various flow

conditions in different geometries was perceived in [17-

29]. The flow characteristics in the occurrence of dis-

sipative effects were perceived in [30]. Heat and mass

transfer inspection in magnetized Walter’s B type nano-

fluid, analysis of micropolar nanofluid, second law analysis

for power law fluid, bioconvection flow of Jeffery nano-

fluid and impacts of induced magnetic field for CuO/H2O

nanofluid perceived in [31-35]. 

2. Model Formulation 

The 2D steady laminar flow of Newtonian fluid is taken

over a paraboloid surface of revolution. The influence of

an imposed magnetic field, resistive heating and internal

heat source are also taken in the governing model. It is

assumed that the fluid flow in the region 

. Moreover, the fluid flow with velocity ,

at the surface where, U0 is the stretching rate and m

denotes the velocity stretching parameter that is < 1 for

upper paraboloid surface of revolution. The physical flow

scenario is decorated in Fig. 1. Physical Theme . 

The magneto-radiative governing model by taking the

effects of heat generation/absorption is described by the

following set of equations [36]: 
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Fig. 1. (Color online) Physical Theme.
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The equation of continuity is described in Eq. (1). The

law of conservation of energy and mass are incorporating

in Eqs. (2)-(4), respectively. Furthermore, the velocity

components u and v are aligned horizontally and vertically,

respectively. The fluid density is represented by , 

denotes the dynamic viscosity, specific heat is denoted by

cp, k is the thermal conductivity,  is electrical con-

ductivity, B2 is applied magnetic field, T is the fluid

temperature, C is the fluid concentration and D denotes

the mass diffusivity. 

The related set of particular flow conditions is: 

At y = 0: 

, (5)

At :

, , , where, u, v and T are

functions of x and y. (6)

The supporting similarity transformations for the model

are defined in the following manner: 

. (7)

Where,  denotes the stream function and chosen in such

a way that it satisfies the continuity equation: 

, (8)

. (9)

After plugging the similarity variables in the governing

model, the following form is attained: 

, (10)

+ , (11)

. (12)

For the self-similar boundary conditions, it is very

noteworthy to mention that the lower value of y is not at

the initial point of the slot. Therefore, it is not possible to

impose all the conditions in Eq. (5) at y = 0. By using y =

A(x + b)(1m)/2 minimal value of y is almost corresponds to

the minimal value of the similarity variable . This value

is given in the following formula: 

. (13)

Thus, feasible flow conditions at the wall for suitable

scale are  = . Therefore, the boundary conditions

become:

,

(14)

. (15)

Furthermore, nondimensional flow model given Eqs.

(10)-(12) depends on the similarity variable . on the

other hand, auxiliary conditions in Eqs. (14) and (15) are

depending on variable . To set the domain  to

, it is suitable to chose F( ) = F(  ) = f(h),

 ( ) =  (  ) = *(), and ( ) = (  ) = *().

Finally, the Eqs. (10)-(12) transformed into the following

form: 

, (16)

, (17)

. (18)

The self-similar boundary conditions for flow model

are the following: 

At  = 0: 

, , , ,
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At :
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Pr, Eckert number Ec and Schmidt number Sc. Mathe-

matical expressions for these parameters are as under:

, ,  and .

Further, nondimensional formulas for the quantities of

physical and engineering interest are as under: 

. (21)

Where,  is local Reynolds number.

3. Mathematical Analysis

The model under consideration is nonlinear boundary

value problem defined at semi-infinite interval. In such

situation it is very difficult to handle the model approxi-

mately or not even exists such solutions. Therefore,

numerical techniques are useful for such models. Thus,

we turned toward the numerical computations of the

model. For this, we employed the coupling of Runge-

Kutta scheme with shooting technique [37-39]. In order to

initiate the algorithm, firstly nonlinear BVP is transform

into the IVP. For this, the transformations are introduced:

, , , , , 

, . (22)

The coupled system given by Eqs. (16)-(18) can be

rewritten in the following version: 
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By plugging the transformations, we attained the

following form the model: 

,
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The supporting initial conditions are as follows: 
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Fig. 2. (Color online) The variations of (a) m and (b) M on the velocity field.
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4. Graphical Results

This section is devoted to explore the flow characteristics

against the various preeminent flow quantities. 

Figures 2a and 2b portraying the fluid vertical and

horizontal velocities against the multiple values of m and

magnetic number M, respectively. Figure 2a elaborates

the effects of varying velocity stretching index parameter

m on the velocity profiles. It is perceived that the velocity

drops. The horizontal velocity  is decreases rapidly

in the region . For , the decrement in

the fluid velocity becomes gradually slow for higher

velocity stretching index parameter. The vertical velocity

profile F( ) is also decreasing function of stretching index

parameter m. In the vicinity of the paraboloid surface of

revolution the effects of the stretching parameter are

almost inconsequential. Beyond the region , these

effects are noted maximum and the velocity profile becomes

straight for increasing values of velocity stretching index

parameter. 

The effects of Lorentz forces on the fluid velocities

(both vertical and horizontal velocity) are portrays in Fig.

2b. It is perceived that the imposed magnetic field favors

the fluid velocity. The horizontal velocity of the fluid

increases rapidly in the region . On the other

hand, vertical component of the fluid velocity shows

almost inconsequential variations in the locality of the

paraboloid of revolution. For , these variations are

maximum and the vertical velocity profile becomes almost

straight. Three-dimensional view of the vertical velocity

F( ) and horizontal velocity  are elucidated in

Figs. 3a and 3b, respectively. 

The impacts of Ec and the velocity stretching index m

on the fluid temperature  ( ) and temperature gradient

 are depicted in Figs. 4a and 4b, respectively. The

effects of Eckert number on the fluid temperature are very

prominent. Fluid temperature increases rapidly near the

paraboloid of revolution. The maximum fluid temperature

is perceived in the portion . Beyond this

region, increase in the fluid temperature becomes slow

F  
0.1  1.0   1.0

 3

0.0  2.0 

 3.0

F  

   

0.0  5.0 

Fig. 3. (Color online) 3D view for (a) m and (b) M on the velocity field.

Fig. 4. (Color online) The variations of (a) Ec and (b) m on ( ) and  '( ).
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down for higher Eckert number. Far from the surface, the

effects of Eckert number become almost inconsequential

and the fluid temperature vanishes asymptotically. Further,

the thermal gradient  is an increases for more

dissipative fluid in the portion . On the other

hand, the impact of velocity stretching index parameter m

on dimensionless fluid temperature  ( ) demonstrated in

Fig. 4b. It is noted that the velocity starching index

parameter opposes the fluid temperature. Near the surface

very cleared effects of m on  ( ) are perceived. The fluid

   
0.0  1.0 

Fig. 5. (Color online) 3D view of ( ) and  '( ) for (a) Ec and (b) m.

Fig. 6. (Color online) The variations of (a) Pr and (b) M on ( ) and  '( ).

Fig. 7. (Color online) The variations of (a) m and (b) Sc on ( ).
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temperature gradually decreases for smaller values of the

velocity stretching index parameter. Three-dimensional

scenario of  ( ) for varying Eckert number and the

velocity stretching index parameter m portrayed in Figs.

5a and 5b, respectively. 

Figures 6a and 6b, decorating the behavior of fluid

temperature by varying the Prandtl number and magnetic

number, respectively. From these, it can be seen that the

fluid temperature decreases for arising Prandtl number

and magnetic parameter. For stronger magnetic field, the

thermal profile shows rapid decreasing behavior near the

surface. As we move away from the surface, the effects of

these parameters become almost inconsequential and

temperature of the fluid vanishes asymptotically. 

The variations in the concentration field of the fluid for

stretching index parameter m and Schmidt number Sc are

elaborated in Figs. 7a and 7b, respectively. It is noted that

for arising values of stretching index m, the concentration

of the fluid starts increasing and maximum increment is

examined in the region . On the other hand,

the Schmidt parameter opposes the fluid concentration.

For higher Sc, the concentration field ( ) decreases

promptly between  = 0.0 to  = 10.0. Furthermore, for

higher  the fluid concentration ( ) shows asymptotic

behavior. 

The numerical values of the shear stresses, local nusselt

and Sherwood numbers for varying pertinent physical

parameters are given in Table 1. It is noted that for higher

values of stretching index parameter m, the skin friction

coefficient increases absolutely while, stronger magnetic

field opposes it. The presence of resistive heating lead to

increase in the local rate of heat transfer. The arising

values of Schmidt number favor the fluid concentration

and stretching index parameter m opposes it. 

Table 2 highlighted the comparative analysis for various

values of parameter n. From the comparison, it is examined

that the presented results are acceptable and showed an

excellent agreement with the existing literature results.

This comparison showed the accuracy and validity of the

analysis. 

5. Conclusions

The magnetized flow of Newtonian fluid is taken over a

paraboloid surface of revolution. The influences of Ohmic

heating are also incorporated in the energy equation. It is

examined that: 

i. The velocities of the fluid enhance due to the

stretching index n. 

ii. The temperature of the fluid rises for more viscous

fluid.

iii. The temperature drops for more magnetized fluid

and increasing Pr opposes the fluid temperature. 

iv. The concentration field declines by increasing the

Schmidt parameter. 

v. The local heat transfer rate significantly enhances for

stronger magnetic field.

vi. The mass transport is rises for higher values of the

Schmidt number.

0.0  4.0 

Table 1. The numerical values for F''(0), '(0) and '(0).

m M Pr Ec Sc F''(0) '(0) '(0)

0.1 0.3 0.3 0.3 0.3 0.74408 0.10263 0.39599

0.2 0.80526 0.11671 0.38380

0.3 0.85440 0.12895 0.37416

0.1 0.5 0.68476 0.00575 0.41974

0.7 0.49025 0.01468 0.44304

0.9 0.17212 0.02451 0.48151

0.3 0.5 0.14031 

0.7 0.27717 

0.9 0.40666 

0.3 0.5 0.00202 

0.7 0.00464 

0.9 0.00725 

0.3 0.5 0.56660

0.7 0.72646

0.9 0.87936

Table 2. Comparative analysis for F''(0) [40].

m Animasaun and Sandeep [40] Present

0.1 0.8671009 0.8681133

0.2 0.8654053 0.859491

0.3 0.8584863 0.852225
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