
Journal of Magnetics 27(3), 242-249 (2022) https://doi.org/10.4283/JMAG.2022.27.3.242

© 2022 Journal of Magnetics

Quasi-linear and Plateaus-like Tunneling Magnetoresistance in Graphene-based 

Tunable Magnetic Barrier Nanostructures

Chaiyawan Saipaopan1 and Wachiraporn Choopan2*

1Demonstration School, Bansomdejchaopraya Rajabhat University, Itsaraphap Road, Hiran Ruchi, Thonburi, Bangkok 10600, Thailand
2Department of Biomedical Engineering, College of Health Science, Christian University of Thailand, 

Donyaihom District Nakhonpathom 73000, Thailand

(Received 12 July 2022, Received in final form 19 September 2022, Accepted 22 September 2022)

The effect of electrostatic and magnetic vector potentials pattern on electrical properties and the tunneling

magnetoresistance in graphene junction with periodic magnetic vector potentials are theoretically investigated

using the transfer matrix method. The magnetic structure on graphene can control the direction of the magne-

tizations which correspond to the parallel and anti-parallel (AP) configurations. In AP magnetic structures with

the applied gate voltage pattern, UA (U1 = U2), the shift of the conductance-peak position as a function of Fermi

energy. The peak corresponds to resonant tunneling, where the incidence energy of the tunneling electron

equals the confinement energy, and the conductance peak decrease approximately linearly with increasing elec-

trostatic potential. The peak position occurs at EF = 0.5U where it is shifted to higher Fermi energy with higher

gate potential, but for the case of UB (U1 = -U2), the peak height is reduced rapidly, and the width increase as

gate potential increases. Because of the periodic magnetic field with zero spatial average in the antiparallel

structure, we found that the minimum conductivity decreases with increasing magnetic energy. They show sup-

pression of Klein tunneling which occurs in the zero-conductance plateaus and leads to the robust magnetore-

sistance plateau and large positive magnetoresistance appears below magnetic energy. For the case of UA and

EF more than magnetic energy, we found that the quasi-linear magnetoresistance feature is applied by an elec-

tric field instead of the usual magnetically driven magnetoresistance.
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1. Introduction

Graphene is a two-dimensional honeycomb lattice of

carbon atoms which was quickly shown [1-3] that the

low-energy quasiparticle in graphene mimic the behaviors

of massless relativistic Dirac fermion. Graphene is a

gapless semiconductor in which conduction and valence

band edges meet at K and K’ in the Brillouin zone. The

quasiparticles in graphene have long spin-flip scattering

and spin lifetime at room temperature [4]. The type of the

charge carriers (either electrons or holes) could be

selected by using electric doping on the graphene [5, 6]

and the carrier density can be manipulated by applying

the electric field effect. By depositing EuO film [7], it can

be induced the exchange splitting on graphene as

ferromagnetic graphene (FG) when the carriers pass

through this layer to split into two subbands of spin [8].

While the theoretical investigation reported that the

magnetic insulator EuO can induce a large proximity

effect on graphene and exhibit a large exchange-splitting

band gap of about 36 meV. [9, 10]. For controlling the

direction of the exchange field, which is perpendicular to

the graphene plane there are several studied in Refs. 9,

11-15. 

One of the main obstacles to the development of the

device is scarce the spin-polarized current source. How-

ever, Rashba [16] has theoretically studied and suggested

that the use of tunnel contact can solve the problem of the

mismatch between the ferromagnetic metal and the

normal conductor junction. At the same time, the solving

problem of the mismatch of the ferromagnetic metal into

a semiconductor can introduce spin-dependent interface

resistance, and spin injection [17, 18]. The material that is

called half-metallic has been predicted that electrical

current can be completely spin-polarized. While Son et al.

[19] predicted that the half-metallic in two-dimensional
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graphene nanoribbon can be induced by external electric

fields, which new open up graphene-based spintronic

devices.

Besides, the Rashaba spin-orbit interaction plays a

crucial role in the control spin because of its strength that

can be controlled by the gate potential. Recently, the

contacting graphene with ferromagnetic insulator EuO

deposited on top of the graphene sheet can induce the

proximity exchange [7]. It is found that the exchange

field (H) is about 5 meV in an adjacent ferromagnetic

insulator. At the same time, the strength of the exchange

field can be enhanced by applying an external electric

field perpendicular to the graphene sheet [20]. T.

Yokoyama [21] proposed that the spin current shows an

oscillatory behavior in the ferromagnetic-gate graphene

structure. While the effect of the exchange field on the

shifting spin conductance in the opposite direction, it is

found that the phase shift can be estimated to be 2H [22].

The main aim of graphene-based spintronics is a perfect

spin-polarized source, Zhai and Chang [23] have investi-

gated the spin-dependent theoretically in the graphene

monolayer. They found that the magnetic-electric barrier

can block the transmission for antiparallel, but only can

not produce a high spin polarization. However, Liewian et

al. [24] suggested that the perfect spin-polarized ( 

) can be achieved by combining the orbital effect and

the Zeeman interaction in graphene junction. Besides,

Song et al. [25-27] demonstrated that a 100 % spin

polarization, more like a half-metallic can be achieved by

using a single magnetic vector potential barrier structure. 

In this paper, we investigate the wave-vector-dependent

transport of massless Dirac electrons through graphene

with nanostructured magnetic barriers. It can be realized

by periodic ferromagnetic nanostrips placed on top of the

graphene layer where this magnetic system creates the

magnetic vector potential (MVP) barrier on the graphene.

For the presence of the orbital effect in MVP barriers, we

study the difference between the transmission and con-

ductance of the parallel and antiparallel magnetization

configurations. By manipulating the two magnetization

configurations, we propose the non-trivial magneto-

resistance base on the wavevector-dependent tunneling

which is the result of the orbital effect of inhomogeneous

magnetic fields. 

Fig. 1. (Color online) Schematic diagram of the graphene system with tunable magnetic barriers. (a) The antiparallel and (b) par-

allel delta-function-shaped magnetic structures.
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2. Theoretical Model

The study of magnetoresistance from a change in the

magnetization structure perpendicular to the graphene

plane. The analysis of such a problem can be achieved by

considering the electrons in graphene as Dirac particles

that propagate through a multiple magnetic vector potential

barrier, where a set of magnetic systems can be mani-

pulated by a parallel or antiparallel configuration as

shown In Fig. 1(a) and 1(b). In this model, it is possible

to create nanoscale magnetic strips using EuO or yttrium

iron garnet (YIG) magnetic materials. That can generate

the orbital energy in a field of 1 T, the comparable spin

splitting order of 25 meV [28]. While the width of the

magnetic stripe can be reduced to very small to 10 nm

using nanolithography [29, 30]. This model can be

considered as a magnetic vector potential superlattice

structure, which characterizes the parallel and antiparallel

vector potential profiles, which is explained by the Ay

equation. The magnetic field is placed in the z-axis

direction, which is perpendicular to the graphene plane (x,

y). In this paper, the magnetic barrier can be approxi-

mated as a set of Dirac-δ function. The magnetic profile

can be written as a function of  

(1)

where m is the number of periods of the magnetic vector

potential and the minus or plus sign for a parallel or

antiparallel magnetic structure, respectively. The term

 is magnetic length. For an antiparallel magnetic

structure, the magnetic fields can be described as the

magnetic vector potential in the Landau gauge.

 (2)

and an example of a magnetic vector potential function

for a parallel structure at m = 1.

 (3)

where d is the distance between the magnetic stripe, and

B is the magnetic field, which is the Heaviside step

function. The real value of B = 0.1 T, gives the value of

the magnetic length of 81.1 nm and E0 = 7 meV, which

are magnetic energy, and can be calculated from .

Therefore, the electron model in this proposed graphene

can be described by the following massless Dirac

Hamiltonian,

 (4)

where vF ≈ 0.86 × 106 m/s is the Fermi velocity of the

particles in graphene, σx and σy are the Pauli spin

matrices, kx and ky are wave vectors of electrons in the xy

plane on graphene.

In this work, we apply the transfer matrix method to

calculate transmission probability. Thus, we assign that

the solution of the Hamiltonian (eq. 4) as ,

A and B is continuous. In addition, due to the symmetry

of the solution in the y direction,  can be

rewritten as . To investigate the scattering

problem at the junction for each magnetic vector potential

barrier, the solution is

  (5)

Where , .

Hence, the solution of the particle travel across the series

of vector potential barriers is 

, (6)

where 

.

and

Here, j indicates the number of the vector potential and Tj

is the transfer matrix in the jth potential barriers.

Therefore, eq. (5) can be reformed to

, (7)

where
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. (8)

We notice that eq. (8) satisfies , which correspond

to the solution of multiple barriers in the transfer matrix

method, 

where ,  and X stands for the outward solution,

inward solution, and transfer matrix respectively. For the

sake of simplicity, we rewrite the product of Mj to X with

the matrix element xij as 

. (9)

To comprehend the above formula, we introduce the X

matrix through the parallel structure with a period of

MVP:

(10)

where  and

.

Here we define inward and outward solutions as

 and  respectively. Thus,

the solution for inward waves and the outward wave

becomes

 (11)

and

  (12)

respectively, where  and  is the angle of injected

electron for the inward and outward region. Using 

and , we can solve for the transmission coefficient t,

as 

.  (13)

For the AP and P alignment of magnetic barriers, we

replace X in eq. (9) with the corresponding series of Mj in

eq. (8) for each pattern. Thus, the transmission coefficient

becomes tAP and tP with above the substitution.

To determine the conditions for the enhancement of

magnetoresistance (MR), we can calculate the difference

between the conductance of a magnetic structure on

parallel (GP) and antiparallel (GAP) magnetization con-

figurations. It can be calculated by the equation below. 

 (14)

The charge conductance GAP,P is given by

 (15)

where  and Ly is the sample size in

the y direction. θ is the angle of incidence in the x-

direction and TAP, P is the transmission probabilities that

can be calculated using the transfer-matrix method.

3. Result and Discussion

In this section, we study the transport properties of

relativistic electron collimation propagating through a

graphene structure with multiple periodic MVP barriers.

To collimate electron gas (2DEG), graphene must be

doped by applying high gate voltage. The collimation

angle of the transmitted electron parallelizes the x-axis. It

allows us to understand the transport behavior of the

relativistic particle. In the case of the magnetic barrier

without electrostatic potential, the conductance for

different values of the magnetic energy in the antiparallel

and parallel alignment of magnetic structures are shown

in Fig. 2. For the AP structure with zero spatial average,

we found that the lowest position of the transmission

probabilities of collimated electron change with the

number of periods of the MVP barriers. The result

indicates that the Dirac-point position shift toward the

positive Fermi energy as a function of the number of

MVP barriers. When the Fermi energy shift is plotted by

comparing with the number of periodic barriers as shown

in Fig. 3. We found that the relationship between the two

quantities is linear where the slope changes as the result

of the width of the magnetic barrier. Therefore, it can be

seen that the characteristic of this quantity can lead to

easier control of the Dirac point position by manipulating

the number of barriers.
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For the P structures with low magnetic energy, we

appear zero-conductance regions because it is not a zero-

on-average periodic magnetic field that leads to the

occurrence of gap-opening near the Dirac point as shown

in Fig. 4. We found that the lowest position of the

transmission probability does not change with the number

of periods of the MVP barriers. This is different from a

parallel building which changes as the magnetic structure

increases the number of periods. This result indicates that

there is an energy gap from the magnetic potential effect

where electrons are localized in those structures. Increasing

the number of periods of this magnetic structure affects

the behavior of resonant transmission where the resonant

peak splitting occurs. With an increase in the number of

periods, the number of resonant peaks is split up, which

results in a band of perfect transmission regions. 

In the case of periodic magnetic barriers with electro-

static potential, the conductance for two patterns of

electrostatic potential in the AP structure are shown in

Fig. 5(a) and 5(b), respectively. Fig. 5(a) shows the effect

of the electrostatic potential pattern on the magnetic

alignment structure on the G(EF). For the presence of the

electric field effect, UA (U1 = U2), the conductance peak

at the low EF decreases approximately linearly with

increasing electrostatic potential. The position of the

conductance peak is shifted to higher EF with higher U,

Fig. 2. (Color online) The transmission probability of colli-

mated Dirac electrons vs. the Fermi energy for the antiparallel

magnetic structures. The (a)-(f) refer to the system with the

MVP barriers from 1 to 6 periods, respectively. The insets

show the antiparallel shapes of the magnetic field of delta-

function barriers and MVP profiles on the surface of graphene.

Fig. 3. (Color online) The Fermi energy with the lowest pos-

sible transmission versus the period of the potential by adjust-

ing the value of the period width.

Fig. 4. (Color online) The transmission probability of colli-

mated Dirac electrons plotted relative to the Fermi energy for

the parallel structures. (a)-(f) The (a)-(f) refers to the system

with the MVP barriers from 1 to 6 periods, respectively. insets

show the parallel shapes of the magnetic field of delta-function

barriers and MVP profiles on the surface of graphene.
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but for the asymmetric case of UB (U1 = -U2) in Fig. 5(b),

the peak height reduced rapidly, and the width increased

as gate potential increased. For the case of parallel

alignment of the magnetization structure, the curves of

their conductivity are not different significantly due to

changes in the pattern characteristic of the gate potential

as shown in Fig. 6(a) and 6(b). In both cases, the pattern

of potentials cannot perturb the band-gap width. 

From the result in Fig. 5 and Fig. 6, it appears the 100

% TMR plateaus to be stable in every potential energy

when EF is less than 2E0 but for the case of the UB

pattern, the TMR exhibits oscillatory behavior with

decaying exponential amplitude when EF > 2E0 as shown

in Fig. 7(b). With the applied UA pattern on magnetic

barrier structure, it shows that TMR has changed from

100 % to 0 % as well as decreases approximately linearly

with increasing Fermi energy as shown in Fig. 7(a).

4. Conclusion

The effect of electrostatic potential patterns on electrical

properties and magnetoresistance was studied in graphene

junctions with two types of multiple periodic barriers. In

this system, the direction of magnetization can be chang-

ed from parallel to antiparallel magnetic configuration.

Typically, the electrons in graphene are unique in carrying

the potential barrier charge without reflection at zero

degrees relative to the direction of motion resulting from

the behavior of the relativistic quantum effect which is

called the phenomenon of Klein tunneling. This phen-

omenon makes it impossible to completely cut off the

current flowing in graphene-based circuits. So, it is

difficult to achieve 100 % complete magnetoresistance

using only normal gate potential in proximity-induced

ferromagnetic graphene. To solve this problem, Klein's

Fig. 5. (Color online) Conductance vs Fermi energy in graphene with gate potential UA.



 248  Quasi-linear and Plateaus-like Tunneling Magnetoresistance
…

 Chaiyawan Saipaopan and Wachiraporn Choopan

quantum tunneling could be eliminated by using a parallel

magnetic barrier to generate an MVP on the graphene.

For the transition from parallel to the antiparallel configu-

ration of the magnetic structure, the Klein tunneling is

resumed. This will cause the transmission of electrons to

be very high. Thus, the transmission probability and

Fig. 6. (Color online) Conductance vs Fermi energy in graphene with gate potential UB.

Fig. 7. Tunneling magnetoresistance vs Fermi energy with controllable gate potential in the case of (a) UA and (b) UB.
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conductivity between the two magnetic field structures

are significantly different. By modifying this magnetic

structure, we can create new techniques for controlling

electrons in graphene to design and build a complete

magnetoresistance device. It can also be further develop-

ed into a transistor design.
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