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ε-Fe2O3 has received attention with particular interest because of its large coercive field at room temperature,

high-frequency millimeter-wave absorption, and the coupling of its magnetic and dielectric properties. This

work investigated the effect of heat treatment on the formation of ε-Fe2O3/SiO2 composites fabricated using

reverse-micelle and sol-gel methods. The heating process was performed at various temperatures to figure out

the optimal conditions for acquisition of the ε-Fe2O3 phase, which exhibits the largest coercive field among the

Fe oxides. The sample treated at 1,075 °C had the highest percentage of ε-Fe2O3 phase, with a coercivity (HC) of

21.57 kOe measured at room temperature that reached a maximum of 23.7 kOe at 230 K. The measurement of

the magnetization-temperature (M-T) curve for this sample also reveals the characteristic magnetic transition

associated with ε-Fe2O3 within the temperature range of 40-150 K. The crystal structure of ε-Fe2O3 was con-

firmed using X-ray powder diffraction. Transmission electron micrographs revealed a broad size distribution of

iron oxide nanoparticles ranging from 12 to 22 nm. The findings indicate that ε-Fe2O3 is a promising candidate

with high electromagnetic-wave absorption capacity that is appropriate for high-speed wireless communication

applications.
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1. Introduction

Magnetic iron oxide-based nanoparticles have received
considerable attention for specific applications [1-3]. Iron
oxides are used in technological applications, such as
permanent magnets, magnetic recording, and information
storage [4, 5], as well as biomedical applications, including
magnetic fluids, magnetofection, cancer therapy, and drug
delivery [6-8]. They are also crucial to theoretical studies
that examine the quantum tunneling of magnetization and
the impact of interparticle magnetic interactions on a
nanoparticle system's magnetic regime [9, 10]. There are
three naturally occurring iron oxides: Fe(II) oxide (FeO),
Fe(III) oxide (Fe2O3), and Fe3O4 (compound of Fe(II)-
oxide and Fe(III)-oxide).

Iron (III) oxide exists as four polymorphs: α-Fe2O3

(hematite), β-Fe2O3, γ-Fe2O3 (maghemite), and ε-Fe2O3;
each polymorph has a distinct structure and properties [4,
11, 12]. Among these four polymorphs, α-Fe2O3 and γ-
Fe2O3, which occur in both bulk and nanosized forms, are
commonly found in nature and have been widely
investigated. α-Fe2O3 is a red-brown solid with corundum
structure that exhibits excellent properties, including low
cost, abundant availability, wide light absorption, environ-
ment compatibility, and thermal stability [2, 13, 14].
Accordingly, α-Fe2O3 is appropriate for many applications
in catalysis [15], biomedicine and biotechnology [16], gas
sensors [17], and rechargeable lithium-ion batteries [18,
19]. γ-Fe2O3 has a cubic spinel structure and exhibits
ferromagnetic ordering with a net magnetic moment (2.5
B per formula unit) and high Neel temperature (~950 K).
Additionally, its chemical stability and low cost enables
wide application in magnetic recording devices, electro-
magnetic absorbers, and biomedical engineering [20-22].
In contrast, β-Fe2O3 and ε-Fe2O3 are rare phases with low
natural abundances. It is challenging to synthesize them
as a single phase because they only exist as nanosized
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structures and are thermally unstable; they readily trans-
form into the α-phase. Notably, ε-Fe2O3, which appears as
an intermediate phase between α-Fe2O3 and γ-Fe2O3, has
an extremely large magnetic coercive field of 20 kOe at
room temperature [23]. Furthermore, it exhibits electro-
magnetic-wave absorption with a high resonance
frequency, which can be used in information storage,
magnetic-field tunable devices, and magnetic recording
media [23-25]. The physical aspects of the ε-Fe2O3 phase
are poorly understood [26-29]. Many chemical and
physical methods have been used to prepare high-
percentage ε-Fe2O3-phase samples; for example, chemical
vapor decomposition [30], flame spray pyrolysis [31],
spray drying method [32], sol-gel method [33], pulsed
laser deposition [34], sputtering [35], and thermal
decomposition [36, 37]. 

Here, we report the synthesis of high percentage of ε-
Fe2O3/SiO2 nanoparticles by combining the reverse-
micelle and sol-gel methods. The reverse micelle process
offers distinct advantages over alternative methodologies,
notably enhanced precision in regulating particle di-
mensions, shapes, uniformity, and dispersal. In addition,
the sol-gel process affords superior control over composition,
primarily due to the silica matrix's role in inhibiting the
agglomeration and phase transition of ε-Fe2O3 particles
into α-Fe2O3. During the reverse micelle procedure, the
precursor Fe(OH)3 was uniformly produced and well
dispersed. The hydrolysis occurs slowly and homo-
genously in the sol-gel procedure. This combination
method created favorable conditions for the formation of
ε-Fe2O3 particles in the range of several tens nanometers
in size. We investigated the formation and stability of the
ε-Fe2O3 phase in the temperature range between 700 °C
and 1,300 °C. These measurements established a maximal

coercivity (HC) of ~21.57 kOe for the sample heated at
1,075 °C, which was identified as the optimal treatment
temperature to obtain ε-Fe2O3. The temperature dependence
of HC was also investigated.

2. Experimental

Figure 1 schematically illustrates the synthetic route to
ε-Fe2O3 nanoparticles. In the reverse-micelle step, two
types of reverse-micelle systems were prepared: R-
micelle A and B. With stirring, the two reverse-micelle
solutions were prepared from the 0.03/0.12/0.33/1 molar
ratio of cetyltrimethylammonium bromide/1-butanol/n-
octane/H2O. To R-micelle A, 0.74 mmol of Fe(NO3)3 was
added to obtain a yellow solution (R-A); to R-micelle B,
30 mmol of NH3 was dissolved to obtain the R-B
solution. The R-B solution was added dropwise into the
R-A solution while stirring for 30 min to obtain a brown
solution. Then, 6.7 mmol of tetraethoxysilane was slowly
injected into the brown solution. Stirring was maintained
for 24 h at room temperature, producing a yellow-brown
solution. The obtained precipitate was collected by
centrifugation, washed several times with CHCl3 and
CH3OH, and dried. Then, the dry powder was heated at
700 °C, 975 °C, 1,000 °C, 1,025 °C, 1,050 °C, 1,075 °C,
1,150 °C, or 1,300 °C for 4 h to obtain a series of
samples.

The crystallinity of each sample was confirmed using
high-resolution X-ray diffraction (XRD; Bruker D8;
Bruker Corp., Billerica, MA, USA). The magnetic properties
of the samples were evaluated using a vibrating sample
magnetometer (model 7304; Lake Shore Cryotronics,
Inc., Westerville, OH, USA) and a Quantum Design
physical property measurement system (Evercool II-9T;

Fig. 1. (Color online) Schematic illustration of the synthesis of the ε-Fe2O3 phase.
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Quantum Design, Inc., USA). The morphologies of the
samples were examined by transmission electron micro-
scopy (TEM; JEM 2010; JEOL Ltd.).

3. Results and Discussion

Figure 2 presents the XRD patterns of the samples
heated at different temperatures. When heating at a low
temperature (700 °C), there was only a broad peak near
21.7°, which was attributed to amorphous SiO2. Iron
oxide phases formed with increasing temperature. Up to
1,075 °C, the many peaks observed were matched to ε-
Fe2O3 signature XRD peaks. The remaining several peaks
with extremely low intensity that corresponded to the α-
Fe2O3 phase indicated that the sample was not composed
of 100 % ε-Fe2O3 phase. This result has been frequently
reported in other studies because the ε-Fe2O3 phase is
thermally unstable [29, 38, 39]. An increasing temperature
caused the intensity of the α-Fe2O3 peaks to significantly
increase, indicating that the portion of α-Fe2O3 was
increasing. The crystallite size of the ε-Fe2O3 nano-
particles was estimated from the full-width at half-
maximum (FWHM) of the peak centered at 2θ = 32.93°
according to the Debye–Scherrer’s equation, as follows:

D = 

where k is the particle geometry-dependent constant, λ is
the X-ray wavelength (1.5406 Å), β is the FWHM of the
peak, and θ is the diffracted angle. Here, the particle size
of 1,075 °C-sample was estimated to be 16.78 nm.

The sizes and shapes of the Fe2O3 particles were
additionally investigated by TEM for the sample heated at

1,075 °C, which had the largest percentage of the epsilon
phase. Silica matrices were etched by stirring in an
aqueous sodium hydroxide solution at 70 °C for 24 hours.
The phase ratio of the sample heated at 1,075 °C obtained
using the reference intensity ratio method was 96.2 % ε-
Fe2O3 and 3.8 % α-Fe2O3. The TEM images (Fig. 3)
revealed spherical particles and a highly uniform particle
size distribution ranging from 12 to 22 nm, with a mean
size of 17 ± 1 nm. This size range is favorable for
maintenance of the ε-Fe2O3 phase because it converts to
the α-Fe2O3 phase if the particle size exceeds ~30 nm [12,
31]. The particle size observed by TEM was in good
agreement with the size determined by XRD.

One of the signature magnetic properties of the ε-Fe2O3

phase is its large HC, which can be used as a unique
criterion to determine whether the ε-Fe2O3 phase exists in
composite nanoparticles. Field-swept vibrating sample
magnetometry measurement at room temperature was
performed to obtain magnetic hysteresis loops of the
samples, which revealed the field dependence of magneti-
zation curves for samples heated at different temperatures.
The sharp decrease at ~3,000 Oe indicated the presence
of a minor amount of α-Fe2O3, which was an impurity in
the ε-Fe2O3 phase. The HC of samples increased with
increasing heating temperature and reached a maximum
at 1,075 °C. However, the signal of the α-Fe2O3 phase in
the hysteresis loop persisted. A further increase in
temperature reduced the HC. This behavior is in good
agreement with the XRD result, indicating that the
evolution of ε-Fe2O3 and α-Fe2O3 is a function of
temperature and the coexistence of two phases within a
particular temperature range. According to the measure-
ment, the highest HC of ~21.57 kOe was achieved for the
sample heated at 1,075 °C. To clearly visualize the
change in HC, its amplitude was plotted as a function of
heating temperature (Fig. 4(b)).

k
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Fig. 2. (Color online) X-ray diffraction patterns of samples
heated at different temperatures.

Fig. 3. (a) low-magnification and (b) high-magnification trans-
mission electron micrographs of Fe2O3 nanoparticles heated at
1,075 °C.
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The hysteresis loops of the sample heated at 1,075 °C
were measured at 20, 50, 80, 100, 120, 150, 180, 200,
230, 250, 270, and 300 K in a full magnetic-field scan
from –50 to 50 kOe. These loops revealed the temperature
dependence of the magnetic properties (Fig. 5). As noted
above, this sample continued to include some α-Fe2O3;
thus, the loops were a combination signal of α-Fe2O3 and
ε-Fe2O3 phases. However, below 150 K, α-Fe2O3 is a
weak ferromagnet; beyond this temperature, it is super-
paramagnetic, indicating that the HC of α-Fe2O3 shows
negligible variation according to temperature. For that
reason, the change in HC was mostly related to the
contribution of the ε-Fe2O3. The temperature dependency
of HC is clearly shown in Fig. 6(a). The coercive field
slightly increased with decreasing temperature, reaching a
maximum value of 23.7 kOe at 230 K. However, a sharp
decrease in HC was observed between 170 K and 100 K,
with the lowest HC of 1.3 kOe occurring at 100 K.
Additionally, HC slightly increased upon further cooling
to 20 K, reaching a value of 6.7 kOe. This behavior was
attributed to increasing anisotropy, which is most likely

related to the dominance of surface anisotropy at low
temperatures [40]. The abrupt decrease in HC measured at
100 K also confirmed the presence of ε-Fe2O3; this
phenomenon originated from the magnetic phase
transition, which led to a decrease in HC. The magnetic
moment as a function of temperature is presented in Fig.
6(b). The zero-field cooling curve under 50 kOe increased
at 41 K, achieving its maximum value at ~149 K, which
constitutes behavior characteristic of the ε-Fe2O3 phase.

4. Conclusion

High-concentration (~96.2 %) ε-Fe2O3 nanoparticles
were synthesized via combined reverse-micelle and sol-
gel methods. The structure properties of 1,075 °C-sample
has been studied by XRD and TEM. These measurements

Fig. 4. (Color online) (a) Normalized magnetization versus
magnetic-field curve for various heating temperatures of sam-
ples at 300 K. (b) Coercivity as a function of heating tempera-
ture. Inset illustrates Fe2O3/SiO2 nanoparticles.

Fig. 5. Magnetic hysteresis loops of the sample heated at
1,075 °C measured at different temperatures.



Journal of Magnetics, Vol. 28, No. 3, September 2023  243 

revealed roughly spherical nanoparticles with a mean size
of ~17 nm. A substantial coercivity (HC) of 21.57 kOe
and 23.7 kOe was observed at temperatures of 300 K and
230 K, respectively, for the sample subjected to heating at
1,075 °C. Based on the temperature dependence of the
magnetic moment, a magnetic transition typical of ε-
Fe2O3 was observed in the range of 40-150 K.
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