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In this article, entropy generation on MHD Williamson nanofluid over a porous shrinking sheet has been

analyzed. Nonlinear thermal radiation and chemical reaction effects are also taken into account with the help of

energy and concentration equation. The fluid is electrically conducting by an external applied magnetic field

while the induced magnetic field is assumed to be negligible due to small magnetic Reynolds number. The

governing equations are first converted into the dimensionless expression with the help of similarity

transformation variables. The solution of the highly nonlinear coupled ordinary differential equation has been

obtained with the combination of Successive linearization method (SLM) and Chebyshev spectral collocation

method. Influence of all the emerging parameters on entropy profile, temperature profile and concentration

profile are plotted and discussed. Nusselt number and Sherwood number are also computed and analyzed. It is

observed that entropy profile increases for all the physical parameters. Moreover, it is found that when the fluid

depicts non-Newtonian (Williamson fluid) behavior then it causes reduction in the velocity of fluid, however,

non-Newtonian behavior enhances the temperature and nanoparticle concentration profile.
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1. Introduction

During the past years, nanofluid has received a remark-

able attention by various researchers due to its number of

application in industry. The homogenous combination of

base fluid and ultrafine nanoparticles are known as

nanofluid. The nanoparticles are made of various metals

or non-metals such as aluminum (Al), copper (Cu), Silver

(Ag), graphite, carbon nanotubes respectively, and the

base fluid which includes oil or ethylene glycol and

water. The suspension of nanoparticles is very much

helpful to increase the heat transfer performance and

thermal conductivity. This technique is the most powerful

and modern to enhance the coefficient of heat transfer. In

solid metals, the thermal conductivity is very much higher

as compared to the base fluids. Nanofluids have numer-

ous applications in industrial engineering and techno-

logical applications. Such type of applications includes

heat exchanger, vehicle cooling, nuclear reactor, cooling

of electronic devices and vehicle thermal management

respectively. The magneto nanofluids are also very much

helpful in magnetic drug targeting in cancer diseases,

hyperthermia, wound treatments, removal of blockage in

the arteries, magnetic resonance imaging (MRI) etc. Choi

[1] was the first who introduced the concept of nanofluid

and described that the embedding of nanoparticles in a

base fluid is very much helpful to increase the thermal

properties of base fluids. Xuan and Li [2] investigated on

convective heat transfer and flow properties of nanofluids.

Buongiorno [3] introduced a new mathematical model to

analyze the thermal features of base fluids. He utilized the

thermophoresis and Brownian motion to enhance the

thermal features of base fluids. Later, various researchers

investigated the nanofluid problems with differential geo-

metrical aspects. For instance, Khan and pop [4] analyzed

the boundary layer flow of nanofluid past a stretching

sheet with the help of Buongiorno [3] model. Mustafa et

al. [5] studied the stagnation point flow of nanofluid over
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a stretching sheet. Some more pertinent studies on the

said topic can be found from the refs. [6-10] and several

therein. 

Entropy generation is a function that measures the level

of irreversibilities in a process. According to the thermo-

dynamics approach, the entropy generation minimization

technique is applied to enhance thermal engineering

devices for its better efficiency. During the occupancy of

irreversibilities, the performance of engineering equipment

decreases. According to the recent analysis [11-13], it is

found that second law of thermodynamic is more efficient

and powerful as compared to the first law of thermo-

dynamics. During the past years, various authors have

utilized the application of second law of thermodynamics

during the manufacturing of thermal engineering systems.

Oztop and Salem [14] explored the entropy generation in

mixed and natural convection heat transfer for energy

systems. Rashidi et al. [15] analyzed the Entropy gene-

ration on MHD nanofluid flow over a rotating porous

disk. Abolbashari et al. [16] investigated the entropy

generation on MHD nanofluid over a permeable stretch-

ing surface. Later, Abolbashari et al. [17] analyzed analy-

tically the entropy generation of non-Newtonian Casson

nanofluid over a stretching surface. Some more studies on

entropy generation can be found from refs. [18-24].

On the other hand, the study of boundary layer flow of

Newtonian and non-Newtonian nanofluid over stretching/

shrinking surface is also very important in different

engineering and industrial applications. In particular, such

type fluids are applicable in nuclear and chemical industry,

foodstuff, material processing, oil engineering reservoirs,

production of paper, glass fiber, wire drawing, drawing of

plastic films, hot rolling and extrusion of plastic sheets

respectively. Non-Newtonian fluid depicts various behaviors

which cannot be analyzed using single relationship. Non-

Newtonian fluids are divided into three groups such as

integral type, rate type, and differential type. Abbas et al.

[25] analyzed numerically the stagnation point flow of

Casson fluid over stretching/shrinking sheet under the

influence of thermal radiation and chemical reaction.

Khan et al. [26] investigated the three-dimensional nano-

fluid flow over the nonlinear stretching sheet with the

application of solar energy. Rashidi et al. [27] analyzed

the MHD viscoelastic fluid flow over a porous wedge

with heat transfer and thermal radiation. Rashidi et al.

[28] examined the influence of buoyancy effect on nano-

fluid flow over a stretching sheet with thermal radiation

and magnetohydrodynamics. Some relevant studies on the

said topic are available in the references [29-34].

With the above analysis in mind, the aim of present

study is to analyze the entropy generation on MHD William-

son nanofluid over a porous shrinking sheet. The govern-

ing flow problem is based on momentum equation, energy

equation and nanoparticle concentration which are simpli-

fied with the help of similarity transformation variables.

The reduced ordinary coupled differential equations are

solved numerically with the help of Successive lineari-

zation method (SLM) and Chebyshev spectral collocation

method [37-39]. The present methodology is better and

converges more rapidly as compared to other computa-

tional methods [22, 40]. A suitable initial guess is selected

that satisfies the governing boundary conditions and the

governing equations are solved iteratively. This paper is

summarized as follows: after the introduction in Sec. (1),

Sec. (2) based on the mathematical formulation of the

problem, Sec. (3) deals with the physical quantities, Sec.

(4) describes the methodology of the problem, Sec. (5)

characterize the entropy generation analysis and finally

Sec. (6) devoted to numerical results and discussion. 

2. Mathematical Formulation

Consider the MHD boundary layer flow over a porous

shrinking surface near a stagnation point at y = 0. The

MHD flow occurs in the domain at y > 0 The fluid is

electrically conducting by an external magnetic field

while the induced magnetic is assumed to be zero.

Cartesian coordinate is chosen in a way such that x-axis is

considered along the direction of the sheet whereas y-axis

is considered along normal to it. Suppose that Cw be the

nano particle fraction at the sheet while the temperature

and nano-particle fraction at infinity is  and . The

velocity of the sheet is considered along x-direction

 

The governing equations of Williamson nanofluid model

can be written as [39]

, (1)

T
∞

C
∞

ũw = ax

∂ũ
∂x
------ + 

∂ṽ
∂y
----- = 0

Fig. 1. (Color online) Geometry of the problem. 
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  , (2)

, (3)

. (4)

The nonlinear radiative heat flux can be written as 

, (5)

and their respective boundary conditions are

, (6)

. (7)

The steam function satisfying Eq. (1) are defined as

 and . Defining the following

similarity transformation variables 

, (8)

and using Eq. (8) in to Eq. (7) and Eq. (3), we get

, (9)

, (10)

. (11)

Their corresponding boundary conditions are 

, (12)

, (13)

, (14)

where , , , , Nb =

, , , Γ =M + k.

3. Physical Quantities of Interest

The physical quantities of interest for the governing

flow problem are local Nusselt number and local Sherwood

number which can be written as 

, (15)

where qw and qm are described as 

. (16)

With the help of dimensionless transformation in Eq.

(8), we have 

, (17)

where Shr and Nur are the dimensionless Sherwood number

and local Nusselt number, respectively and Rex = 

is the local Reynolds number. 

4. Numerical Method

We apply the Successive linearization method to Eq. (9)

with their boundary conditions in Eq. (12), by setting [41]

, (I = 1, 2, 3,...), (18)

where fI are unknown functions which are obtained by

iteratively solving the linearized version of the governing

equation and assuming that  are known

from previous iterations. Our algorithm starts with an

initial approximation f0 which satisfy the given boundary

conditions in Eq. (13) according to SLM. The suitable

initial guess for the governing flow problem is 

. (19)

We write the equation in general form as 

, (20)

where 

, (21)

and 

, (22)

where L and N are the linear and non-linear part of Eq.

(9). By substituting Eq. (18) in Eq. (9) and taking the

linear terms only, we get 

, (23)

the corresponding boundary conditions becomes 

. (24)

We solve Eq. (23) numerically by a well-known method

namely Chebyshev spectral collocation method. For

ũ
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ũ
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numerical implementation, the physical region  is

truncated to  we can take Γ to be sufficient large.
With the help of following transformations this region is

further transformed in to [−1, 1], we have 

. (25)

We define the following discretization between the

interval [−1, 1]. Now, we can apply Gause-Lobatto
collocation points to define the nodes between [−1, 1] by

 (J = 0, 1, 2, 3, ... N), (26)

with (N + 1) number of collocation points. Chebyshev

spectral collocation method based on the concept of

differentiation matrix D. This differentiation matrix maps

a vector of the function values G = [ f (Ω0), ..., f (ΩN)]
T

the collocation points to a vector G' is defined as 

, (27)

the derivative of p order for the function f (ζ ) can be

written as 

. (28)

The entries of matrix D can be computed by the method

proposed by Bhatti et al. [41]. Now, applying the spectral

method, with derivative matrices on linearized equation

Eq. (23) and Eq. (24), we get the following linearized

matrix system 

, (29)

the boundary conditions takes the following form 

,

, (30)

where

. (31)

In the above equation As,I−1(s = 0, 1, ... 3)  are (N + 1) ×

(N + 1) diagonal matrices with As,I−1(ΩJ) on the main

diagonal and 

 (J = 0, 1, 2, 3, ... N). (32)

After employing Eq. (31) on the solutions for fI are

obtained by solving iteratively Eq. (30). We obtain the

solution for f (ζ) from solving Eq. (31) and now Eq. (10)

and Eq. (11) are now linear therefore, we will apply

Chebyshev pseudo-spectral method directly, we get 

BH = S, (33)

with their corresponding boundary conditions boundary

conditions 

, (34)

, (35)

where , B is the set of linear coupled

equation of temperature and nanoparticle concentration, S

is a vector of zeros, and all vectors in Eq. (33) are

converted to diagonal matrix. We imposed the boundary

conditions in Eq. (34) and Eq. (35) on the first and last

rows of B and S respectively.

5. Entropy Generation Analysis

The volumetric entropy generation of the Williamson

nanofluid is given by [37-39]

. (36)

In the above equation, the entropy generation consists

of three effects, (i) conduction effect (also known as heat

transfer irreversibility, (HTI)); (ii) fluid friction irrever-

sibility (FFI) and (iii) diffusion (also known as diffusive

irreversibility, (DI)). The characteristics entropy generation

can be written as

. (37)

With the help of Eq. (8), the entropy generation in

dimensionless form can be written as

. (38)

These number are given in the following form

. (39)

6. Results and Discussion

In this section, the effects of various emerging para-

meters such as Prandtl number, Brownian motion para-

meter, thermophoresis parameter, radiation parameter,

chemical reaction parameter, magnetic parameter, porosity

parameter, Lewis number, Brinkmann number and Reynolds
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vũ
2

T̃∞k̃
-------- + 

RD

T̃∞

-------- ∂T̃
∂y
------∂C

∂y
------- ∂C

∂x
-------∂T̃

∂x
------+⎝ ⎠

⎛ ⎞

S′′′0 =
κ ΔT( )2

L
2
T̃∞

2
-----------------

NG = 
sgen′′′
s0′′′

------------- = Re 1
4

3
---Nr+⎝ ⎠

⎛ ⎞θ ′2 ζ( ) + 
ReBr

Ω
------------ f ″2 ζ( ) Wef ″3 ζ( )+( )

+ 
ReBr

Ω
------------Γf ′2 ζ( ) Reλ1 ζ( )+

χ

Ω
----⎝ ⎠
⎛ ⎞

2

φ′2 ζ( )

+ Reλ1

χ

Ω
----⎝ ⎠
⎛ ⎞θ ′ ζ( )φ′ ζ( )

Re = 
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number are plotted for velocity, temperature, nanoparticle

concentration and entropy profile. For this purpose, Fig. 2

to Fig. 14 are sketched. Furthermore, all the graphical

results are demonstrated for Newtonian and Williamson

fluid. Table 1 and Table 2 show the numerical computation

of local Nusselt number and local Sherwood number for

all the physical parameters. Figure 2 shows the velocity

profile against magnetic and porosity parameter (Γ). In
this figure, we can observe that due to the increment in

(Γ), then the fluid velocity increases whereas when the
fluid behavior depicts non-Newtonian then the fluid

velocity diminish. The impact of Brownian motion para-

meter (Nb) is displayed in Fig. 3. From this figure, we can

analyze that temperature profile enhances due to the

greater impact of Brownian motion parameter (Nb). It can

Table 1. Numerical values of reduced Nusselt number (Nur)

for various values of Pr, Nr, Nb and Nt.

Pr Nr  Nb Nt Nur

2 1 0.5 0.5 1.0715

4 1.1214

6 1.1403

0.5 0.7883

1.5 1.1868

2.0 1.3708

0.6 0.9822

1.0 0.9386

1.5 0.8957

0.4 1.0082

0.9 0.9486

1.4 0.9034

Table 2. Numerical values of reduced Sherwood number (Shr)

for various values of γ, Le, Nb and Nt.

γ Le Nb Nt Shr

0.1 0.5 0.5 0.5 0.4510

0.5 0.6377

1.0 0.8215

0.6 0.4802

1.0 0.6001

1.5 0.7544

0.6 0.4690

1.0 0.5166

1.5 0.5492

0.6 0.4329

1.0 0.3845

1.5 0.3510

Fig. 2. (Color online) Velocity profile for different values of Γ

when Pr = 1, Nr = 0.5, α = −1.15, γ = 0.5, Nb = 0.2, Nt = 0.2,

Le = 0.5.

Fig. 3. (Color online) Temperature profile for different values

of Nb when Γ = 0.4, Pr = 1, Nr = 0.5, α = −1.15, γ = 0.5, Nt =

0.2, Le = 0.5.

Fig. 4. (Color online) Temperature profile for different values

of Nr when Γ = 0.4, Pr = 1, α = −1.15, γ = 0.5, Nb = 0.2, Nt =

0.2, Le = 0.5.

Fig. 5. (Color online) Temperature profile for different values

of Nt when Γ = 0.4, Pr = 1, Nr = 0.5, α = −1.15, γ = 0.5, Nb =

0.2, Le = 0.5.
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be illustrated by Fig. 4 that radiation parameter (Nr) also

enhances the temperature profile and boundary layer

thickness. Larger values of radiation parameter (Nr) gives

more heat to the fluid which leads to increase the temper-

ature profile and boundary layer thickness. Thermophoresis

parameter (Nt) also enhances the temperature profile as

shown in Fig. 5, whereas the behavior of temperature

profile becomes opposite for large values of Prandtl

number (Pr) as shown in Fig. 6. In other words, for

greater values of Prandtl number (Pr) leads to decrease

the thermal boundary layer thickness and opposes in

spreading the heat. 

Figure 7 to Fig. 10 are sketched to analyze the influence

of Brownian motion parameter, thermophoresis parameter,

Lewis number and Chemical reaction parameter on the

dimensionless nanoparticle concentration profile. In Fig.

7, we noticed that chemical reaction parameter (γ) tends

to reduce the concentration profile. Figure 8 represents

the variation of Lewis number (Le) nanoparticle concent-

ration profile. From this figure, we observed that for large

Fig. 6. (Color online) Temperature profile for different values

of P
r when Γ = 0.4, Nr = 0.5, α = −1.15, γ = 0.5, Nb = 0.2, Nt =

0.2, Le = 0.5.

Fig. 7. (Color online) Concentration profile for different val-

ues of γ when Γ = 0.4, Pr = 1, Nr = 0.5, α = −1.15, Nb = 0.2,

Nt = 0.2, Le = 0.5.

Fig. 8. (Color online) Concentration profile for different val-

ues of Le when Γ = 0.4, Pr = 1, Nr = 0.5, α = −1.15, γ = 0.5,

Nb = 0.2, Nt = 0.2.

Fig. 9. (Color online) Concentration profile for different val-

ues of Nb when Γ = 0.4, Pr = 1, Nr = 0.5, α = −1.15, γ = 0.5, Nt

= 0.2, Le = 0.5.

Fig. 10. (Color online) Concentration profile for different val-

ues of Nt when Γ = 0.4, Pr = 1, Nr = 0.5, α = −1.15, γ = 0.5, Nb

= 0.2, Le = 0.5.

Fig. 11. (Color online) Entropy profile for different values of

Br when Γ = 0.4, Pr = 1, Nr = 0.5, α = −1.15, γ = 0.5, Nb = 0.2,

Nt = 0.2, Le = 0.5.
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values of Lewis number (Le) nanoparticle concentration

profile diminish and its associated boundary layer thick-

ness. In Fig. 9, we found that Brownian motion parameter

(Nb) causes a reduction in nanoparticle concentration

profile. From Fig. 10, we observed that nanoparticle

concentration profile and its associated boundary layer

thickness increases due to the greater influence of thermo-

phoresis parameter (Nt). Entropy profiles are sketched in

Fig. 11 to Fig. 14 for Brinkmann number, Reynolds number,

Radiation parameter, magnetic and porosity parameter. In

all these we observed that all the parameters enhance the

entropy profile and if the fluid is non-Newtonian then

entropy profile enhances more. 

7. Conclusion

In this article, entropy generation on MHD Williamson

nanofluid over a porous shrinking sheet has been analyzed

under the influence of nonlinear thermal radiation and

chemical reaction. The governing equation is transformed

into nonlinear ordinary differential equation with the help

of similarity transformations variables. The obtained

resulting coupled equations are solved with the help of

Successive linearization method and Chebyshev spectral

collocation method. The major outcomes of the present

analysis are summarized below: 

• Velocity profile behaves as an increasing function for

large values of Γ.
• Thermal radiation effects enhance the temperature

profile, whereas Prandtl number shows opposite behavior.

• Entropy profile increases for all the physical para-

meters. 

• An increment in chemical reaction parameter and

Lewis number shows a decrement in nanoparticle con-

centration profile. 

• Temperature profile and concentration profile increases

for large values of thermophoresis parameter. 

• The present analysis is also presented for Newtonian

fluid by taking λ = 0, as a special case of our study.

Nomenclature

: Velocity components (m/s)

x, y : Cartesian coordinate (m)

: Pressure (N/m2)

: Porosity parameter

Re : Reynolds number

NG : Dimensionless entropy number

Re : Reynolds number

: Time (s)

Pr : Prandtl number

: Mean absorption coefficient

S : Suction/injection parameter

Nb : Brownian motion parameter

Nt : Thermophoresis parameter

qw : Heat flux 

Le : Lewis number

qm : Mass flux

Br : Brinkman number

: Environmental temperature (K)

M : Hartman number 

ũ, ṽ

p̃

k̃

t̃

k

T
∞

Fig. 12. (Color online) Entropy profile for different values of

Γ when Pr = 1, Nr = 0.5, α = −1.15, γ = 0.5, Nb = 0.2, Nt =

0.2, Le = 0.5.

Fig. 13. (Color online) Entropy profile for different values of

Nr when Γ = 0.4, Pr = 1, α = −1.15, γ = 0.5, Nb = 0.2, Nt = 0.2,

Le = 0.5.

Fig. 14. (Color online) Entropy profile for different values of

Re when Γ = 0.4, Pr = 1, Nr = 0.5, α = −1.15, γ = 0.5, Nb =

0.2, Nt = 0.2, Le = 0.5.
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B0 : Magnetic field

Nr : Radiation parameter

: Temperature (K) and Concentration 

g : Acceleration due to gravity (m/s2)

DB : Brownian diffusion coefficient (m/s2)

DT : Thermophoretic diffusion coefficient (m/s2)

K : Chemical reaction parameter

Greek Symbol

: Thermal conductivity of the nano particles

α : Stretching parameter

λ : Williamson fluid parameter

: Stefan-Boltzmann constant

μ : Viscosity of the fluid (Ns/m2)

χ, λ1 : Dimensionless constant parameter

Ω : Dimensionless temperature difference

φ : Nanoparticle concentration

θ : Temperature profile

σ : Electrical conductivity (S/m)

ϕ : Stream function

τ : Effective heat capacity of nano particle (J/K)

ν : Nano fluid kinematic viscosity (m2/s)

γ : Dimensionless chemical reaction parameter
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