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In this paper, the peristaltic flow of Psedoplastic fluid with variable viscosity in an asymmetric channel is

examined. The bionic effects by means of magnetohydrodynamics (MHD) are taken into account. The

assumptions of long wave length and low Reynolds number are taken into account. The basic equations

governing the flow are first reduced to a set of ordinary differential equation by using appropriate

transformation for variables and then solve by using perturbation method. The effect of physical parameters

on the pressure rise, velocity and pressure gradient are illustrated graphically. The trapping phenomenon is

analyzed through stream lines. A suitable comparison has also been made as a limiting case of the considered

problem. 
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1. Introduction

Peristaltic is a mechanism of fluid transport generally

from lower to higher pressure induced by a progressive

wave of area of contraction/expansion which propagates

along the length of a flexible tube or channel. Peristaltic

transport has attracted a number of researchers because of

wide applications in physiology and industry such as

chyme motion in the gastrointestinal tract, urine transport

from the kidney to bladder, vasomotion of small blood

vessels, movement of ovum in the female fallopian tube,

transport of spermatozoa and swallowing food over the

esophagus. These flows are broadly studied for different

geometries by using numerous assumptions; few note-

worthy studies on the topic can be seen from the list of

references [1-10] and several therein.

Moreover, the hydromagnetic channel flow have attracted

many investigators due to its numerous applications such

as generator geothermal reservoirs, development of mag-

netic devices for cell separation, magnetic wound or

cancer tumor treatment causing magnetic hyperthermia,

magnetic filtration, separation and microfluidic devices. A

number of researchers have studied MHD fluid flow

under various physical situations, for instance, the effect

of magnetic field on blood flow was reported by Sud et

al. [11] and they discussed that the influence of moving

magnetic field accelerates the speed of blood. Yldrm and

Sezer [12] have studied the effects of partial slip on the

peristaltic flow of a MHD Newtonian fluid in an asym-

metric channel. A list of relevant studies on the topic can

be found from the list of references [13-21]. 

Furthermore, the pump cannot always be designed as a

uniform tube for serving the needs such as biomedical

instruments. Hakeem et al. [22] discussed the influence of

an endoscope and fluid with variable viscosity on

peristaltic motion. Hakeem et al. [23] have also examined

the peristaltic flow of a fluid with variable viscosity under

the effect of magnetic field. 

In all of the above mentioned studies fluid viscosity is

assumed to be constant whereas in industrial system

mostly fluids have variable viscosity behavior [24]. In

order to fill this gap, the present work deals with the flow

of Pseudoplastic fluid having simultaneous effects of

variable viscosity and MHD in an asymmetric channel

under the assumption of long wave length and low

Reynolds number.

The paper goes in the following style. In Section 2, the

formulation of the problem is presented. The resulting
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nonlinear problem is solved by means of regular per-

turbation method in Sections 3. The effects of essential

physical parameters are demonstrated through graphs in

Section 4. Finally, Section 5 concludes main finings. 

2. Mathematical Formulation of the 

Problem

We consider the Pseudoplastic fluid with variable

viscosity in an asymmetric channel having width d1 + d2.

The fluid is electrically conducting in the presence of a

constant magnetic field B0 applied in the perpendicular

direction. Due to small magnetic Reynolds number, the

induced magnetic field is neglected. The flow is generated

by sinusoidal wave trains propagating with constant speed

c along the channel walls. A rectangular coordinate system

(X, Y) is chosen such that X- axes lies along the center

line of the channel and Y- axis transverse to it. The

geometry of the wall surface is defined as

, upper wall (1)

, lower wall (2)

in which c is the velocity of the wave, λ is the wave-

length, a1 and b1 are the amplitudes of the waves, φ is the

phase difference.

The equations governing the flow are

(3)

(4)

where J is the current density and B is the total magnetic

field in which ρ is the fluid density, d/dt is the material

derivative and T is the Cauchy stress tensor. The con-

stitutive equations for an incompressible Pseudoplastic

fluid are

(5)

where  is the pressure,  is the identity tensor and  is

the extra stress tensor given by

(6)

(7)

(8)

where μ, , ,  and  are the dynamic viscosity,

the upper-convective derivative, the first Rivlin-Ericksen

tensor and the relaxation times. We introduce the following

transformation between fix and wave frames

, (9)

where , ,  are the velocity components, pressure in

the laboratory frame and , ,  are the velocity

components, pressure in the wave frame respectively. The

appropriate equations describing the flow in the wave

frame are

, (10)

(11)

, (12)

 , (13)

 , (14)

 . (15)

Making use of following dimensionless quantities:

  

  

  

  .(16)

Under the lubrication approach, the incompressibility

condition is automatically satisfied and Eqs. (11)-(15)
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(18)

(19)

. (20)

The effect of variable viscosity on the peristaltic flow

can be investigated for μ(y).

For the present investigation, we assume the viscosity

effects in the dimensionless form as 

(21)

where α is the viscosity parameter. Using Eq. (20) into

Eq. (17), we can write

(22)

By eliminating pressure p from Eq. (22) reduces to 

(23)

The boundary conditions in the wave frame are then

written as

(24)

(25)

The mean flow rate in wave frame of reference is given by

(26)

which is related with dimensionless mean flow rate in the

laboratory frame θ, by the relation

 

(27)

and the dimensionless pressure rise Δp is defined by

(28)

3. Solution of the Problem

For analytical solutions, we expand ψ, F, dp/dx in terms

of small parameters ξ and α as

(29)

where

(30)

Using Eqs. (29) and (30) into Eqs. (22) and (23 and

equating the coefficients of like terms of ξ and α, we

have the following system of equations.
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(31)

. (32)

The boundary conditions can also be obtained by sub-

stituting Eqs. (29) and (30) into Eqs. (24) and (25). Thus,
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with the zeroth order deformation problems are given as

follows:

(33)

(34)

Solving the Eqs. (31)-(32) with the use of boundary

conditions (33) and (34), we obtained the zeroth-order
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pressure gradient as
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conditions for the first-order are

(38)

(39)

(40)

(41)

Solving the Eqs. (38) and (39) with the use of boundary

conditions (40) and (41), the first order solutions for

stream function, axial velocity and pressure gradient can

be obtained as 

(42)
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3.3. Second order system
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4. Results and Discussion

The Figs. 1 to 15 have been displayed in order to analyze

the effects of pertinent parameter, namely Hartmann

number M, perturbation parameter ξ, viscosity parameter

α, volume flow rate θ on velocity profile, pressure rise,

pressure gradient and trapping phenomenon. Figure 1

shows the variation of velocity profile for different values

of Hartmann number M. It is depicted that the velocity

decreases by increasing the value of M. It is in accordance

with the physical expectation that the effect of magnetic

field is to decrease the magnitude of the velocity profile

because in the presence of magnetic field introduces a so

called force the Lorentz force that always acts opposite

direction of the flow direction and as a result this type of

resisting force slows down the velocity of the fluid.

Figures 2 to 4 are prepared to examine the behaviour of

perturbation parameter ξ, viscosity parameter α and volume

flow rate θ on the velocity profile. Figures 2 depicts that

an increase in ξ leads to a decrease in the velocity u at the

boundaries of the channel. However at the center of the

channel u it increases by increasing the values of ξ.

Figure 3 illustrates that there is no change in u for different

values of α. Figure 4 witness that there is a decrease in u

at the boundaries of the channel when θ is increased. At

the center of the channel, an increase in u is noticed with

the increasing values of θ . An increase can be related

with the decrease in the kinematic viscosity. Figures 5 to

7 are plotted to see the effects of M, ξ and α versus

pressure rise. These figures illustrate that peristaltic pump-

ing rate increases by increase in M, ξ and α. Figure 8

reveals the influence of φ on pressure rise. This figure

predicts that pumping rate decreases with an increase of
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Fig. 1. The variation of M on velocity profile when θ = 1.4,

φ = 0.7, ξ = 0.2, α = 0.01, a = 0.6, b = 0.9, d = 1.

Fig. 2. The variation of ξ on velocity profile when θ = 1.4,

φ = 0.7, ξ = 0.5, α = 0.01, a = 0.6, b = 0.8, d = 1.

Fig. 3. The variation of α on velocity profile when θ = 1.4,

φ = 1, M = 0.5, ξ = 0.2, a = 0.6, b = 0.8, d = 1.
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Fig. 4. The variation of θ on velocity profile when φ = 0.7,

M = 0.5, ξ = 0.2, α = 0.01, a = 0.6, b = 0.8, d = 1.

Fig. 5. The variation of M for pressure rise when θ for φ = 5,

ξ = 0.02, α = 0.3, a = 0.2, b = 0.2, d = 1.

Fig. 6. The variation of ξ for pressure rise when θ for φ = 5,

M = 1, α = 0.3, a = 0.2, b = 0.2, d = 1.

Fig. 7. The variation of α for pressure rise when θ for φ = 5,

M = 1, α = 0.03, a = 0.2, b = 0.2, d = 1.

Fig. 8. The variation of φ for pressure rise when θ for M = 1,

ξ = 0.03, α = 0.3, a = 0.2, b = 0.4, d = 1.

Fig. 9. The variation of M for pressure gradient when φ = 1,

θ = 0.3, ξ = 0.2, α = 0.1, a = 0.4, b = 0.4, d = 1.

Fig. 10. The variation of ξ for pressure gradient when φ = 1,

θ = 0.3, M = 1, α = 0.1, a = 0.4, b = 0.4, d = 1.

Fig. 11. The variation of α for pressure gradient when φ = 5,

θ = 0.2, M = 1, ξ = 0.2, α = 0.4, a = 0.2, b = 0.2, d = 1.
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φ. All said figures have opposite behavior in co-pumping

region. As it is exposed previous that the Lorentz force is

acting directly to dump the mainstream velocity, therefore

decrease in velocity component in flow direction cusses

noticeable decrease of pressure rise in co-pumping region.

Figures 9 to 11 represent the behaviour of pressure

gradient for different values of M, ξ and α. The effects of

M, ξ and α on the pressure gradient is plotted in Figures 9

to 11. It is noticed that the absolute value of pressure

gradient increases with an increase in M, ξ and α whereas

near the channel walls pressure gradient is small. It is due

to the fact that flow can easily pass in the middle of the
Fig. 12. The variation of φ for pressure gradient when θ = 0.3,

M = 1, ξ = 0.2, α = 0.1, a = 0.4, b = 0.4, d = 1.

Fig. 13. Streamlines for viscosity parameter α. 

Fig. 14. Streamlines for Hartmann number M. 

Fig. 15. Streamlines for perturbation parameter ξ.
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channel. Figure 12 shows the variation of φ on the pressure

gradient. It is observed that, an increase in φ decreases the

pressure gradient. Figures 13 to 15 portray the effects of

trapping phenomenon through stream lines. Figure 13

shows the streamlines for viscosity parameter α. It is seen

here that as one increase the value of viscosity parameter,

the number of bolus is increased. To see the effect of

Hartmann number M on the trapping can be depicted in

Fig. 14. It is noted that the size of trapped bolus decreases

by increasing the values of M. The effect of ξ on the

trapping is illustrated in Fig. 15. It is found that the size

of the trapped bolus increases with increasing ξ bolus

does not occur at ξ = 0. It is worthwhile mentioning that

the streamlines for this particular model are not presented

previously. The results obtained in this paper will now be

offered experimental authentication.

5. Conclusion

In this paper a mathematical model on the peristaltic

flow of a Pseudoplastic fluid in an asymmetric channel is

investigated. The assumption of low Reynolds number

and long wavelength are taken into account. Analysis has

been carried under the influence of variable viscosity and

magnetic field. Analytical solutions are obtained by regular

perturbation method. The main points are as follows:

• The velocity profile increases by increasing the values

of M, ξ and θ at the center of the channel.

• The pressure rise increases with the increase in M, ξ

and α in the pumping region.

• The pressure rise decreases by increasing the value of

φ in the pumping region.

• The magnitude of pressure gradient is increasing function

of M, ξ and α.

• It is worthwhile mentioning that the problem for this

particular model is not solved previously even by any

traditional perturbation method. However, by taking

viscosity parameter α = 0, the presented result reduces

to Newtonian fluid.
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