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This paper presents an electromagnetic analysis of a tubular linear machine with axially magnetized permanent

magnets using improved analytical techniques. Based on the magnetic vector potential and a two-dimensional

polar-coordinate system, the magnetic field and armature reaction field can be derived. Using these, equivalent

circuit parameters, such as the electromotive force and inductance, can be obtained analytically. Finally, the

generating characteristics are derived with the equivalent circuit method. In this study, the finite element

method was employed to provide a comparative evaluation, and experiments were conducted to validate the

results of the analytical analysis.
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1. Introduction

Recently, tubular linear machines (TLMs) have been

employed in an increasingly wide range of industries,

ranging from transportation, manufacturing, and office

automation to material processing, healthcare, and elec-

trical power generation. TLMs are popular because they

offer high force density and bandwidth, and because of

the absence of end windings and zero net attractive force

[1]. Linear electromagnetic actuators are able to provide

thrust force directly to the load without mechanical gears

and transmission. Consequently, they offer significant

advantages over rotary machines in terms of simplicity

and efficiency [2]. Using high-energy permanent magnets

(PMs) rather than windings is beneficial. The former have

a simple rotor design without field windings, slip rings,

and exciter generators, and this allows them to avoid heat

dissipation in the rotor to provide higher overall efficiency.

This improves the performance of PM linear machine

drives, which can be used as high-performance machine

solutions [3, 4]. An axially magnetized permanent magnet

(AMPM) topology can be produced at low costs, because

its PMs are easily magnetized [5]. However, in slotted

machines, detent force is produced as a result of the

interaction between PMs and the slotted core, and this can

affect the control accuracy [6]. Therefore, an AMPM

topology is suitable for TLMs with a slotless winding

structure, an example of which is illustrated in Fig. 1.

However, the magnetization of a PM mover composed

of AMPMs and iron poles cannot be modeled homo-

geneously [5], resulting in complicated boundary condi-

tions in the z-direction [7]. These boundary conditions

make it difficult to approach analytically. Therefore, in

this paper, we adopt a method based on the assumption

that iron poles are identical to radially magnetized PMs

[8]. Using the results from magneto-static calculations

based on the finite element method (FEM), the boundary
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Fig. 1. (Color online) Structure of a tubular linear synchro-

nous machine with single-sided axially magnetized permanent

magnets.
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conditions for the magnetic field can be simplified.

Furthermore, Carter's coefficient is applied to the model

for a TLM with an AMPM topology and iron poles.

Based on improved analytic techniques, the magnetic

field resulting from the PMs and the armature reaction

field from the coils can be derived, and equivalent circuit

parameters and the generating characteristics can, in turn,

be calculated. The validity of the proposed analytical

method was verified experimentally, and it was evaluated

by comparing its results with the results of the FEM.

2. Analytical Magnetic-field Calculations

2.1. Analytical model and assumptions

Figure 2 shows the analytical model for TLMs with

AMPMs. The PMs and iron poles on the outer mover are

arranged to form a magnetic path through the air gap.

Here, Rom and Rim respectively denote the outer and inner

radii of the outer mover topology; Row and Riw respec-

tively denote the outer and inner radii of the outer

coreless-winding topology; and Roc and Ric respectively

denote the outer and inner radii of the inner-core topo-

logy. With the exception of the iron core, the permeability

of all materials used in this model is assumed to be equal

to that of air (μ0).

2.2. Using virtual magnetization to calculate the mag-

netic field resulting from the PM

To calculate the magnetic field produced by the PMs,

the proposed analytical model considers three regions, as

shown in Fig. 2: nonmagnetic material (I), the outer

mover topology (II), and the air gap and coreless winding

(III).

Based on the analytical method introduced in [8], the

magnetic flux of the iron pole can be assumed to have a

magnetization component in the vertical direction coming

from PMs with a magnetization component in the

horizontal direction, as shown in Fig. 3(a). 

Figure 3(b) shows the Fourier series expression for the

magnetization of the outer magnet topology, represented

as follows:

, (1)

where c1 = RomRim/(Rom + Rim), c2 = 1/(Rim + Rom), kn = nt/

p, and t denotes the pole pitch. Coefficients c1 and c2 in

Equation (1) are used to represent Mrn
II to a function of r

[9], and n denotes the nth-order space harmonics. 

In the analytical model, the flux density B in the

magnets can be expressed in terms of the field intensity H

and magnetization M as

. (2)

Because there is no free current in the PM region,

= 0. Therefore, = . The magnetic

vector potential A is defined as = B. Because of

the geometry of the cylindrical machine, the magnetic

vector potential has only Aqn, which is independent [10].

In non-conducting regions, the magnetic vector potential

is assumed to have a Coulomb gauge dependence, and it

satisfies Poisson’s and Laplace’s equations, stated respec-

tively as follows:

                              

(3)

By solving Equation (3), the following equation can be

derived:

 

(4)

Moreover, Equation (5) can be solved when the mk is

simplified to 1:
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Fig. 3. (Color online) (a) Flux-line distributions and (b) mag-

netization model for the outer magnet topology.

Fig. 2. (Color online) Simplified analytical model for predict-

ing the magnetic field resulting from a PM.
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(5)

Finally, using the definition of the magnetic vector

potential, the normal magnetic flux density (Br
PM) and the

tangential magnetic flux density (Bz
PM) from the PM can

be derived as follows:

(6)

The undefined coefficients An
I,II,III and Bn

I,II,III can be

determined using the following boundary conditions :

(i) Br
I (r) = 0 and K1 ( ) = 0, because of the

identities of the modified Bessel functions: the

second kind.

(ii) Br
I (Rom) = Br

II (Rom) and Br
II (Rim) = Br

III (Rim),

because of the continuity of magnetic vector

potentials at each boundary.

(iii)Bz
I (Rom) + μ0Mz = Bz

II (Rom) and Bz
III (Rim) + μ0Mz

= Bz
II (Rim), because the equivalent current owing

to Halbach magnetization exists at the upper and

lower surfaces of the outer PMs.

(iv) Bz
III (Roc) = 0, because the permeability of the iron

core is assumed to be infinite, and the tangential

components of H are continuous at r = Roc, owing

to the absence of surface current density.

2.3. Using Cater’s coefficient to calculate the armature

reaction field from the coils

To obtain the armature reaction field, the proposed

analytical model considers three regions, as shown in

Fig. 4. Here, τm, τc, τsp, and τcw denote the PM width,

coil pitch, slot pitch, and slot width, respectively.

For TLMs with AMPMs, the influence of the iron pole

can be accounted for by applying Carter’s coefficient, Kc

[11]:

, (7)

where g is the length of the air gap. The opening factor g

is given by

. (8)

Therefore, the effective air-gap length ge and the equivalent

outer mover radius Rime are given respectively as follows:

(9)

The Fourier series expression for the current densities

of the phase are represented by 

,  (10)

where c3 =RowRiw/(Row + Riw) and c4 = 1/(Row + Riw). Coeffi-

cients c3 and c4 in Equation (10) are used to represent the

current density components in a function of r. In electrical

machines with three-phase winding, these windings are

spaced 120 electrical degrees apart. The Fourier coeffi-

cient Jqn consists of J0 = Nturni/Sc, where Nturn, I, and Sc
denote the number of conductors, the flowing current, and

the area of the coil, respectively. 

In regions (i) and (iii), J = = 0 and M = 0, owing

to the absence of free current and magnetization, respec-

tively. Likewise, in region (ii), M = 0, because of the

absence of magnetization. From Equation (2), the govern-

ing equations can be obtained, as mentioned above:

 (11)

Here, the superscripts i, ii, and iii denote the outer air

gap, coreless winding, and inner air gap regions, respec-

tively. Equation (11) can also be solved as follows:

 (12)

Finally, using the definition of the magnetic vector
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Fig. 4. (Color online) Simplified analytical model for predict-

ing the armature reaction field.
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potential, the normal magnetic flux density (Br
coil) and the

tangential magnetic flux density (Bz
coil) from the coil are

derived as follows:

 (13)

The undefined coefficients An
i,ii,iii and Bn

i,ii,iii can be

determined by using the following boundary conditions:

(i) Bz
i (Rime) = 0, because the influence of the iron pole

can be accounted for, given that the permeability of

the outer mover is assumed to be infinite, and the

tangential components of H are continuous at r =

Rime, owing to the absence of any surface current

density.

(ii) Br
i (Row) = Br

ii (Row) and Br
ii (Riw) = Br

iii (Riw), owing

to the continuity of magnetic vector potentials at

each boundary.

(iii)Bz
i (Row) = Bz

ii (Row) and Bz
ii (Riw) = Bz

iii (Riw), because

there is no surface current at the upper and lower

surface of the coreless winding regions.

(iv) Bz
iii (Roc) = 0, because the permeability of the iron

core is assumed to be infinite, and the tangential

components of H are continuous at r = Roc, owing

to the absence of any surface current density.

3. Electrical Parameters and Generating 
Characteristics

3.1. Back-EMF

The flux linkages are computed by considering the

distribution of windings within the thin sheet in the each

layer of the coreless winding region, with the coil pitch

τc. When the mover is shifted along the axial direction in

the (r, θ, z) coordinate system, and when the coreless

windings are fixed within the (r, θ, a) coordinate system,

their relationship is given by α = z + ut, where u is the

speed of the mover and t is the movement time. 

Therefore, the flux linkage for each coil turn (φpm) can

be derived as follows:

(14)

The flux linkage per phase resulting from the PMs (λpm)

is given by λpm = Nturnφpm, where Nturn is the number of

turns per slot. The stranded coils distributed along the

radial and axial directions are denoted by rn and nz,

respectively, as shown in Fig. 5.

Finally, the back-EMF can be calculated as follows:

(15)

3.2. Inductance calculations

The flux linkage per turn resulting from the coil is

given by

(16)

The flux linkage per phase from the armature reaction

(λcoil) is given by λcoil = Nturnφcoil. If the leakage inductance

is ignored, the self-inductance per phase (Lself) can be

derived as follows:

. (17)

In the case of a PM synchronous machine with three-

phase winding where the phases are 120 electrical degrees

apart, the mutual inductance (M) is expressed as

.  (18)

The synchronous inductance (Ls) can be derived with

the following equation:

 (19)
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Fig. 5. (Color online) Illustration of winding for calculating

electrical parameters.
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where Φa is the flux linkage of phase A.

3.3. Analyzing the generating characteristics 

The resistance per phase (Rph) can be calculated by Rph

= Nturn ρc λc/Ac, where ρc is the electrical resistivity of the

conductor, lc is the circumference of the coil given by lc =

2π (Row + Riw)/2, and Ac is the cross-sectional area of the

coil given by Ac = π rc
2. Here, rc is the radius of the coil.

As shown Fig. 6, the equivalent circuit for a single

phase requires the following circuit parameters: no-load

induced voltage (E0), phase current (Iph), synchronous

inductance (Ls), resistance per phase (Rph), load resistance

(RL), and terminal voltage (Vt). Using these parameters,

the generating characteristics are derived using the

equivalent circuit method (ECM). First, the phase current

is calculated as follows:

,  (20)

where Xs is the synchronous reactance given by Xs =

2πfLs. Here, f is the frequency of the no-load induced

voltage.

The terminal voltage is derived as follows:

.  (21)

Finally, the output power (Pout) is determined with the

following equation:

,  (22)

where Vt_rms and Iph_rms are the root-mean-square (rms)

values for the terminal voltage and the phase current,

respectively. Equation (22) represents the sum of powers

for the three phases.

4. Validation and Experimental Testing

The open circuit field and the armature reaction field

are the electro-magnetic phenomena caused by the outer

PMs and the current flowing through the coil, as shown in

Fig. 7. The specifications and design parameters are

presented in Table 1. Moreover, in order to verify the

performance of the proposed method, an experimental

system was implemented on a double-sided TLM and

load bank, as shown in Fig. 8.

Figure 9 shows a comparison of the proposed analytical

results with the FEM results, along with the experimental

results from measuring the back-EMF of a single phase.

The proposed analytical method and the FEM were
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Fig. 6. (Color online) Equivalent circuit of a TLM: (a) simplified equivalent circuit, (b) vector diagram for the case when power

factor is unity.

Fig. 7. Comparing the analytical results with the FEM results

at the center of the coil (a) magnetic flux density from the

PMs and (b) magnetic flux density from the coils.

Table 1. Specifications for the actual tubular linear machine.

Symbol Designation Unit Value

Rom Outer radius of the outer mover topology mm 50

Rim Inner radius of the outer mover topology mm 40

Roc Outer radius of the inner-core topology mm 25

Ric Inner radius of the inner-core topology mm 15

Row Outer radius of the coreless winding mm 37

Riw Inner radius of the coreless winding mm 29.5

τ Pole pitch mm 30

τcw Axial length of a slot mm 10

τi Axial length of an iron pole mm 10

τm Axial length of a permanent magnet mm 20

Nturn Number of turns per slot - 200

Br Remanent flux density T 1.3

μ0 Permeability of air H/m 4π × 10−7

u Maximum mover speed m/s 0.3
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evaluated under the condition of the rated speed, u. Table

2 shows the predictions and measurements for electrical

parameters such as the back-EMF, inductance, and re-

sistance. Figure 10 shows the generating characteristics at

the rated mover speed. The generating characteristics

were obtained according to various load resistances (RL).

In these figures, the overall analytical results were

found to agree with the FEM results and measurements.

However, there were some differences when testing the

method at maximum output power. These differences are

the result of the manufacturing and measuring process.

Nevertheless, the differences are so slight as to be negligible.

5. Conclusions

This paper offered an analysis of the electromagnetic

characteristics of a TLM with AMPMs. The boundary

conditions for axially magnetized machines are challeng-

ing when approached analytically, because the outer

mover topologies are composed of PMs and iron poles,

and these cannot be modeled homogeneously. To solve

this problem, the proposed method assumes that iron

poles are identical to radially magnetized PMs. This way,

the armature reaction field can be derived using Carter’s

coefficient. These assumptions were made to simplify the

(otherwise complex) analytical model.

Based on a magnetic vector potential and a two-dimen-

sional polar-coordinate system, the governing equations

for deriving the magnetic flux density from the PMs were

obtained, along with the armature reaction. From these

equations, equivalent circuit parameters were obtained−

e.g., the electromotive force, inductance, and resistance.

Further, the generating characteristics were derived by

applying these parameters to the equivalent circuit method.

Finally, by comparing the analytical predictions with

results from the FEM, the validity of the analytical method

presented in this paper was verified. These results suggest

that the proposed method can be used as a convenient tool

in similar studies or initial designs in order to reduce the

time required for electromagnetic analysis.
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