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In this study, we propose an analytical model for studying magnetic fields in radial-flux permanent-magnet

eddy-current couplings by considering the effects of slots and iron-core protrusions on the eddy currents. We

focus on the analytical prediction of the air-gap field by considering the influence of eddy currents induced in

conducting bars. In the proposed model, the permanent magnet region is treated as the source of a time-

varying magnetic field and the moving-conductor eddy current problem is solved based on the resolution of

time-harmonic Helmholtz equations. The spatial harmonics in the air gap and in slots, as well as the time

harmonics are all considered in the analytical calculation. Based on the proposed field model, the electromagnetic

torque is computed by using the Maxwell stress tensor method. Nonlinear finite element analysis is performed

to validate the analytical model. The proposed model can be used for permanent-magnet eddy-current

couplings with any slot–pole combination.
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Introduction

Permanent magnet (PM) eddy-current coupling (PMEC)

is a useful device for power transmission and speed

adjustment, which has been studied intensively in recent

years [1-6]. In general, the conductor rotor is slotless in

PMEC. In order to enhance the capacity for power trans-

mission, a slotted conductor rotor topology with the axial-

flux type was proposed in [1], which can substantially

improve the torque density of PMEC.

The study of the magnetic field in PM devices can be

achieved in two ways: numerical methods [1, 2] and

analytical methods [3-12]. Numerical methods such as the

finite element (FE) method can yield accurate predictions

of the performance of a device by considering the real

geometry and nonlinear material properties, but the FE

method is time-consuming because accurate results

require a refined mesh of the model, which may limit its

application to design optimization. By contrast, analytical

methods require much less computational resources and

computational time, and they can be effective for making

rapid evaluations of the performance of PMEC with

specific settings for the design parameters.

The layer model method is used widely as an analytical

method for slotless PM devices [3-7]. This method divides

the model into several layers where it assumes that the

physical properties in each layer are homogeneous. How-

ever, this method is not applicable to the slotted model

due to the slots and iron-core protrusions, which lead to

discontinuity in the conductor layer. Another method that

has been used recently is the magnetic equivalent circuit

(MEC) method [8]. Complex geometry and nonlinear

material properties can be considered with the MEC

method, whereas they are normally simplified or ignored

in analytical models. However, when employing this

method, it is necessary to know the magnetic path before

analytical modeling. Moreover, for a model where the air

gap is large or variable in width, such as the PMEC, the

field predictions obtained using this method lack accuracy.

The subdomain method is used frequently for models

with slotted rotor topology such as PM machines [9-13].

This method divides the discontinuous field into several

simple solution domains and the field distributions can

then be obtained by solving the governing equations in

each subdomain by applying the boundary conditions. In

the study of PM machines based on the subdomain model,
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previous studies have often focused on predicting the air-

gap field distributions without considering the influence

of eddy currents [9, 10], or predicting the eddy current

loss in magnets [11, 12], windings [9, 10], and cores [13],

where the topologies are isolated with no mutual influence,

and thus their solutions are not applicable to the modeling

of the slotted conductor rotor shown in Fig. 1.

The torque performance and the parameter analysis

were investigated to some extent in [1] using the FE

method, but predicting the magnetic field using an analy-

tical method has not been reported previously, although

this would be of great utility in preliminary design work

and parameter optimization. In the present study, we

propose an accurate analytical subdomain model that

considers the effects of slots and iron-core protrusions to

predict the magnetic field distribution of a radial-flux

PMEC. In this derivation, we consider the effects of eddy

currents induced in the conducting bars on the air-gap

field, the mutual effects between the conducting bars, and

the effects of the spatial harmonics of slots. The PM

region is treated as the source of a time-varying magnetic

field and the moving-conductor eddy-current problem is

solved based on the resolution of time-harmonic Helmholtz

equations. The FE method results verified the validity of

the analytical model.

2. Analytical Field Modeling

2.1. Geometry and assumptions

The geometric representation of the model used to

derive the air-gap magnetic field of a radial-flux PMEC is

shown in Fig. 2. The geometric parameters comprise the

inner radius of the yoke of the conductor rotor Rci, the

radius of the conductor rotor surface Rco, the inner radius

of the magnets Rmi, and the outer radius of the magnets

Rmo. The number of pole pairs is p and the pole-arc to

pole-pitch ratio is α. The conductor rotor has Q slots and

the slot opening angle is θc = 2πβ/Q, where β is the bar-

arc to slot-pitch ratio. The initial position of the q-th

spoke is defined as θq = 2π(q − 1)/Q. 

In the derivation, as shown in Fig. 2, the two-dimen-

sional (2D) analytical model is divided into three types of

subdomains, i.e., PM (region 1), air gap (region 2), and

conducting bars (region 3). The analytical modeling

process is based on the following assumptions, which are

commonly employed in the analysis of PM devices: (1)

the permeability of the yoke and protrusions is infinite;

(2) the conductivity of the yoke is neglected; (3) the axial

length of the conducting bars and the magnets is infinite,

and the end effect along the axial direction is neglected;

(4) the magnetic vector potential A in each sub-region has

only an axial component; (5) the conducting bars are

shorted to each other through end rings; (6) the value of

the permeability of the air, bars, and magnets is 1; and (7)

the magnets are radial magnetized.

Moreover, in order to simplify the theoretical analysis

of the eddy current problem in the sub-regions of the

conducting bars, then based on a previous study [4], the

PM region is treated as the source of a time-varying

magnetic field. In the polar coordinates, the magnetization

distribution of the PM in region 1 along the circum-

ferential direction can be expanded into a Fourier series

, (1)

where

 (2)

Fig. 1. (Color online) Slotted PMEC with iron-core protru-

sions.
Fig. 2. (Color online) Symbols and geometries of the subdo-

main model investigated in this study.
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 with m = 1,3,5,… (3)

and where θδ is the initial angle position of the PM rotor,

r and θ are the radial and circumferential positions,

respectively, and Br is the remanence of the magnet.

By considering the time variable, the magnetization in

complex notation can be written as

,  (4)

where Δω is the angular frequency:

,  (5)

and where n1 is the input speed of the primary, s is the

slip, and m is the order of the time harmonic. A tilde over

a variable denotes its complex form, containing the

complex quantity .

It should be noted that the vector potentials in each sub-

region vary sinusoidally with time at the same regular

frequency Δω. Therefore, they can be expressed in complex

notation as

,  (6)

where e
z
 is the unit vector in the axial direction and i

refers to the order of the regions.

2.2. Vector potential distributions

It is known that the magnetic field in each region can

be expressed by the vector potential as

,  (7)

where A is the vector potential, H is the field intensity,

and M is the magnetization.

Therefore, at any time in region 1, the field equation is

.  (8)

According to assumption (1), we have the boundary

condition

.  (9)

Then the general solution of (8) can be given by

,  (10)

where Ã1, B�1, and C�1 are the constant coefficients that

need to be determined, and the following notation is

adopted [10]

.  (11)

The expressions for the particular solution Ãp in (10) are:

if , then

;  (12)

and if , then

, (13)

where 

 (14)

 (15)

 (16)

.  (17)

According to the assumption, the source of the magnetic

field is time-varying. Based on (6), the eddy current

density induced in region 3q can be derived as 

.  (18)

Thus, the governing function for region 3q is a Helmholtz

equation, which can be concluded as

.  (19)

Considering the infinite permeability of the iron-core

protrusion, the boundary conditions on the surface of

protrusions are

,  (20)

which is a Sturm-Liouville problem with homogeneous

Neumann boundary conditions. In addition, applying the

 j = 1–

λpm m, 1≠

λpm m, 1=
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boundary condition of the inner rotor yoke surface which

requires

,  (21)

and the general solution of vector field in region 3q can

be obtained as

, (22)

where Ã3q and C�3q are the constant coefficients that need

to be determined, k is the order of the spatial harmonic

caused by the spatial distribution of bars, Jx is the Bessel

function with order x, and Yx is the Neumann function

with order x:

 (23)

 (24)

 (25)

.  (26)

It should be noted that, unlike the analytical model used

for predicting the eddy currents density in PM machines

[9-13], for the model proposed in the present study, the

eddy currents flow between the bars via the axial end

ring, and thus the interaction between the bars must be

considered. According to (18) and (22), the sum of the

eddy currents induced in region 3q in terms of the m-th

time harmonic is

.  (27)

The sum of the currents in all of the conducting bars is

zero, i.e.,

,  (28)

so (28) can be developed further as

.  (29)

Equation (29) indicates the relations between the magnetic

quantities in the conducting bars.

The governing function for region 2 is

.  (30)

The general solution of the vector field in this region is

,  (31)

where Ã2, B�2, C�2, D�2, Ẽ2, and F�2 are the constant

coefficients that need to be determined, and n is the order

of the spatial harmonic in regions 1 and 2.

2.3. Interface conditions

It can be seen that the expressions for the vector

potential distributions in regions 1 and 3 already consider

the boundary conditions along the surfaces of the inner/

outer rotor yoke and protrusions. Thus, in order to investi-

gate the effects of the eddy current reaction field, the

interface conditions between regions should be considered,

thereby establishing a strong-coupling model to study the

influence of the eddy currents on the air-gap field and PM

region.

A. Interface between regions 1 and 2

The vector potential is continuous between regions 1

and 2, which requires

.  (32)

By applying the interface condition, the expression for the

vector potential in region 1 can be developed as

(33)

(34)

 (35)

where Ã(1)
0 , Ã(1)

n, and C�(1)n are the constant coefficients that

need to be determined. ηm1 and ηm2 lead to:

if , then

 and ;  (36)

and if , then

 and ; (37)

otherwise,

.  (38)

λpm m, 1≠

ηm1 = 1 ηm2 = 0

λpm m,  = n = 1

ηm1 = 0 ηm2 = 1

ηm1 = ηm2 = 0
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For the undetermined coefficients, the subscript denotes

the number of the region and the subscript denotes the

harmonic order. The coefficients in (33) can be determined

by

 (39)

.  (40)

B. Interface between regions 2 and 3q
At the interface between regions 3q and 2, the vector

potential is continuous, which requires

.  (41)

By applying (41), expression (22) can be developed as

, (42)

where Ã(3q)
0 and Ã(3q)

k are the undetermined constant coeffi-

cients, which can be determined by

 (43)

.  (44)

C. Interface conditions in region 2

By applying the interface conditions, the vector potential

distributions in regions 1 and 3q are determined based on

the vector potential distribution in region 2. Since the PM

magnetic field and the eddy current reaction field are

coupled in region 2, the expression for the vector potential

in region 2 can be determined by applying the following

interface conditions

 (45)

. (46)

Thus, (31) can be developed as

, (47)

where we introduce the notation [10]

 (48)

and the constant coefficients can be determined by

 (49)

 (50)

 (51)

 (52)

.  (53)

By substituting the general solution for the vector potential

of each region ((33), (42), and (47)) into the coefficient

equations ((39), (40), (43), (44), (49)-(53)), linear equations

are obtained, which can be written in matrix form as

, (54)

where

 (55)
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(56)

.  (57)

N and K are the numbers of spatial harmonics, which are

used in field calculations for regions 1 and 2, respectively.

The unknown coefficients in (56) can then be determined

easily by solving this Cramer system. The numerical

solution can be obtained using mathematical tools such as

MATLAB. The detailed forms of the elements are given

in the appendix.

It can be seen that by applying the interface conditions,

the constant coefficients for the vector potential in regions

1, 2, and 3 are correlated directly with each other. The

time harmonic order m and the spatial harmonic order n
and k appear in the coefficient expressions for each region.

Based on the linear equations ((39), (40), (43), (44), (49)-

(53)), the proposed analytical model is strongly coupled

between the three regions, thereby considering the effect

of the eddy current reaction field on the air-gap field.

2.4. Flux density distributions

The radial and circumferential components of the flux

density in each region can be obtained from the vector

potential distribution by 

(58)

The flux density distributions in region 1 are given by

(59)

for the radial component and 

(60)

for the circumferential component, where

 (61)

(62)

The flux density distributions in region 2 are given by 

(63)

for the radial component and 

 (64)

for the circumferential component.

The flux density distributions in region 3q are given by

 (65)

for the radial component and

(66)

for the circumferential component.

2.5. Electromagnetic torque

Based on the proposed model, the electromagnetic

torque of the PMEC can be obtained easily from the air-

gap flux density according to the Maxwell stress tensor:

,  (67)

where La is the axial length of the overlapping area

between the magnets and the conducting bars, Rt is the

radius of the circle in the air gap, which is taken as the

integration path, and the expressions of the terms are

 (68)

 (69)

 (70)
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.  (71)

3. Model Validation

In order to validate the proposed model, the analytical

results were compared with those obtained by FE analysis

based on 2D and three-dimensional (3D) models, using

the commercial software package Ansoft Maxwell. The

major parameters of the model used in the validation are

given in Table 1. The permeability and conductivity of

the yoke and iron-core protrusions are not considered in

the analytical model, so in order to demonstrate the

effectiveness and limitations of the analytical model, the

nonlinear properties of the material were considered in

the FE analysis. Table 2 compares the nonlinear features

considered in the analytical model and the FE model. The

material used for the yoke and the protrusions in the FE

model was set to “steel_1008.” For the sake of simplicity

and generality, the validation was performed based on a

simple model, which could be considered as a benchmark.

The initial angular position of the PM rotor was set to δθ

= 0.

Table 1. Parameters of the model

Parameters Symbol Value

Number of pole pairs p 4

Number of conducting bars Q 16

Pole-arc to pole-pitch ratio α 0.75

Bar-arc to slot-pitch ratio β 0.5

Outer radius of the magnets Rmo 33 mm

Inner radius of the magnets Rmi 29 mm

Outer radius of the conducting bars Rco 27 mm

Inner radius of the conducting bars Rci 25 mm

Axial length of the overlapping area between magnets and bars La 40 mm

Axial length of the model L 50 mm

Remanence of magnets Br 1.18 T

Conductivity of conductor σ 5.8 × 107 S/m

Number of time harmonics used for computation of time-varied field M (m) 25

Number of spatial harmonics used for magnetic field computation in region 1 and 2 N (n) 100

Number of spatial harmonics used for magnetic field computation in region 3q K (k) 5

Table 2. Nonlinear features of the model

Model Saturation effect Conductivity of the iron

Analytical model
Neglected 

(μiron → ∞)

Neglected 

(σiron = 0 S/m)

2D FE model
Considered 

(steel_1008)

Considered 

(σiron = 2 × 106 S/m)

3D FE model
Considered 

(steel_1008)

Considered 

(σiron = 2 × 106 S/m)

Fig. 3. (Color online) Flux lines obtained from the 2D non-

linear FE simulation: (a) at a slip speed of n1s = 20 rpm and

(b) at a slip speed of n1s = 2000 rpm.
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Figure 3 shows the flux lines in the 2D FE model with

a low value (20 rpm) and a high value (2000 rpm) for the

slip speed, respectively. The corresponding circumferential

and radial components of the flux density distribution in

regions 2 and 3q calculated from (63)-(66) are shown in

Figs. 4-7. The value of the slip speed was selected arbitrarily

to validate the analytical model. The components calcu-

lated in region 2 (at r = 27.5 mm) and region 3 (slot 1 and

slot 2, at r = 26 mm) were compared with the results

obtained from the FE simulation.

Figures. 4 and 6 show that the analytical predictions

obtained by the proposed model were in excellent agree-

ment with the FE results for the flux density distributions

in the air gap and conducting bars at a low slip speed. At

a high slip speed, as shown in Figs. 5 and 7, the analytical

results had high accuracy according to the 2D FE predic-

tion, but they differed slightly from the 3D FE results. It

is interesting to note that the main reason for this discre-

pancy was due to model assumptions (3) and (5). In fact,

in the analytical calculation and 2D FE analysis, at both

ends of the magnet along the axial direction, the flux

density distribution and flux leakage (axial end effect of

the magnet) were neglected, and the end path connecting

the bars was treated as shortened. By contrast, in the 3D

Fig. 4. (Color online) Comparison of the flux density distri-

butions in the air gap predicted analytically and by nonlinear

FE analysis at r = 27.5 mm, with a slip speed of n1s = 20 rpm:

(a) circumferential component and (b) radial component.

Fig. 5. (Color online) Comparison of the flux density distri-

butions in the air gap predicted analytically and by nonlinear

FE analysis at r = 27.5 mm, with a slip speed of n1s = 2000

rpm: (a) circumferential component and (b) radial component.

Fig. 6. (Color online) Comparison of the flux density distri-

butions in the conducting bars (q = 1 and 2) predicted analyt-

ically and by nonlinear FE analysis at r = 27.5 mm, with a

slip speed of n1s = 20 rpm: (a) circumferential component and

(b) radial component.
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FE model, both the end effect and the real eddy current

path at the end ring of the conductor rotor were consider-

ed. Figure 8 shows the axial end effect calculated by the

3D FE simulation, where the back iron of the magnet

rotor is hidden in this figure to show the flux density

distribution more clearly. It can be seen that because the

magnets had a finite axial length in the real model, the

flux density distribution at the both ends of the magnet

along the axial direction could be studied in the 3D FE

model. Figure 9 shows the real eddy current path at the

conductor rotor obtained from the 3D FE simulation,

which indicates that in the real model, the eddy currents

flowed through the end ring and bars to form a closed

loop and this could be analyzed correctly in the 3D FE

model. However, it should be noted that when the axial

length of the overlapping area between the magnets and

bars relative to the axial length of the whole model had a

larger ratio, the influence of these effects on the magnetic

field was smaller. In practical applications, the large axial

length of the overlapping area between the magnets and

bars are often adopted to improve the torque density of

the device. Moreover, a comparison of the analytical

results and the 2D FE results showed that although the

saturation effect and the eddy currents induced in the iron

cores were both neglected in the analytical modeling, they

had little effect on the accuracy of the field prediction,

especially for the model with a high value of β. Similar

investigations conducted with other β parameters showed

that the effects of the eddy currents induced in the

protrusions only became evident when the value of β was

low (β ≤ 0.3). However, the torque density in the model

decreased significantly in this range for β, so this range is

not likely to be investigated in practical applications. In

addition, the iron yoke of the conductor rotor could be a

laminated one to diminish the eddy currents induced in

the protrusions. Furthermore, the normal working range

area for a PMEC corresponds to low slip values [5], so

the effects of these physical phenomena are not significant.

Figure 10 compares the analytical predictions of the

torque-slip-speed characteristics with the 2D and 3D FE

results, which shows that the analytical results were in

good agreement with the 2D FE predictions, and they

were similar to those obtained by the 3D FE analysis. The

differences between the torque predictions obtained from

Fig. 7. (Color online) Comparison of the flux density distri-

butions in the conducting bars (q = 1 and 2) predicted analyt-

ically and by nonlinear FE analysis at r = 27.5 mm, with a

slip speed of n1s = 2000 rpm: (a) circumferential component

and (b) radial component.

Fig. 8. (Color online) Axial end effect of the magnets.

Fig. 9. (Color online) Real eddy current path of the conductor

rotor.
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the analytical model and the 3D FE analysis were due to

the axial end effect, as discussed previously. Moreover,

Fig. 10 shows that the waveforms of the torque calculated

by the analytical and 3D FE methods followed the same

trend, which means that the analytical model can be an

alternative approach for studying performance and for

multi-parameter optimization.

4. Conclusion

In this study, we proposed a comprehensive and accurate

analytical model for predicting the magnetic field di-

stributions for a radial-flux PMEC with a slotted topology.

The analytical model can be used for slotted PMECs with

any slot–pole combination. The analytical model considers

the complex boundary conditions caused by the slots and

iron-core protrusions, the spatial harmonics caused by the

slotting effects, and the influence of eddy currents on the

air-gap field. We verified the validity of the proposed

model by comparing the results obtained with those

produced by nonlinear FE analysis. 

Although the magnetic field distributions can be pre-

dicted by FE simulations, the results obtained using the

proposed analytical model are meaningful and they may

be valuable in the first design stage and for multi-para-

meter optimization given the lower computational time

requirements and the production of better insights into

physical phenomena. 

Appendix I

The expressions for the elements in the linear equations

are given as follows.

In equations (39) and (40), we have

 (72)

(73)

In equations (50)-(53), we have

 (74)

 (75)

 (76)

 (77)

(78)

 (79)

(80)

where

 (81)

 (82)

 (83)

Fig. 10. (Color online) Comparison of the torque waveforms

predicted analytically and by FE analysis.
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. (84)

In equations (43) and (44), we have

 (85)

 (86)

 (87)

 (88)

 (89)

 (90)

 (91)

.  (92)

Appendix II

List of symbols

A : Magnetic vector potential

A : Magnetic vector potential component

B : Magnetic flux density component

Ã(i)
j – D�(i)j : Constants, i is the number of region, j is the

number of harmonic order 

H : Magnetic field intensity vector

M : Magnetization vector

M : Magnetization component

j : Complex operator

Jx : Bessel function of with order x
Yx : Neumann function with order x
μ0 : Permeability of free space

Br : Remanence of magnets

σ : Conductivity of conductor

m : Order of time harmonic used for computation of

time varied field

n : Order of spatial harmonic used for computation

in region 1 and 2

k : Order of spatial harmonic used for computation

in region 3q

θδ : Initial angle position of the PM rotor

p : Number of pole pairs

Q : Number of conducting bars

α : Pole-arc to pole-pitch ratio

β : Bar-arc to slot-pitch ratio

Rmo : Outer radius of the magnets (see Fig. 2)

Rmi : Inner radius of the magnets (see Fig. 2)

Rco : Outer radius of the conducting bars (see Fig. 2)

Rci : Inner radius of the conducting bars (see Fig. 2)

La : Axial length of the overlapping area between the

magnets and bars

n1 : Input speed

s : Slip

Superscripts 

(1) : PM region

(2) : Air-gap region

(3q) : Bar region

Subscripts

r : radial component

θ : tangential component
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