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This paper presents a comparative study of a Tubular Linear Machine (TLM) with an Axially Magnetized

Single-sided Permanent Magnet (AMSPM) and an Axially Magnetized Double-sided Permanent Magnet

(AMDPM) based on analytical field calculations. Using a two-dimensional (2-D) polar coordinate system and a

magnetic vector potential, analytical solutions for the flux density produced by the stator windings are derived.

This technique is significant for the design and control implementation of electromagnetic machines. The field

solution is obtained by solving Maxwell’s equations in the simplified boundary value problem consisting of the

air gap and coil. These analytical solutions are then used to estimate the self and mutual inductances. Two

different types of machine are used to verify the validity of these model simplifications, and the analytical

results are compared to results obtained using the finite element method (FEM) and experimental measurement.
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1. Introduction

Tubular permanent magnet linear machines are increasingly

being employed in the industry ranging from transporta-

tion, manufacturing, and office automation to material

processing, health care, and generation systems due to

their high force density, high bandwidth, virtually zero

attraction force, and the absence of end windings [1].

Such machines are advantageous because they exhibit good

linearity and do not require rotary-to-linear components,

notably the absence of mechanical gears and transmission

systems, which results in a higher dynamic performance

and improved reliability. 

Stator structures of electric machines are widely classi-

fied into two types: slotted stator and slotless stator. The

former usually has a higher force density, but may also

produce an undesirable destabilizing tooth ripple cogging

force and has the highest eddy current loss in the magnets

and the iron, in particular when operating at high speed.

On the other hand, the latter eliminates the tooth ripple

cogging effect, and thereby improves the dynamic perfor-

mance at the expense of a reduction in specific force

capability [2, 3]. These disadvantages can be complement-

ed by using a rare-earth permanent magnet because they

have greater magnetic force than conventional magnets

[4]. Moreover, a mover with axially magnetized permanent

magnets (AMPMs) does not need radially magnetized

permanent magnets (PMs) for the magnetic path, while a

mover with radially magnetized PMs comprises array

surface-mounted PM blocks on an iron backing. Because

of these advantages, we choose an axially magnetized

array as the mover and a slotless structure as the stator.

This topology has advantages with regard to the cost of

manufacture, since axially anisotropic magnets are widely

available, and they are magnetized simply by placing

them in a solenoid impulse magnetizing fixture [5]. In a

previous study, a complicated method was used for

calculating the characteristics of a TLM with AMPMs [2,

3]. The intricate boundary conditions of the existing

method pose an analytical burden. To bypass the compli-

cated calculations, this paper assumed that the iron poles

are same as radial magnetized PMs, because the magnetic

field characteristics of the coil regions for the calculation

of the inductance are not significantly affected by the iron
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poles. On the basis of this assumption, the armature

reaction field can be easily derived by using a magnetic

vector potential and a 2D polar coordinate system. Based

on the derived armature reaction magnetic field, the

inductance can also be derived. A TLM with an AMSPM

and a TLM with an AMDPM are each subsequently

modeled. We examined the effectiveness of the analytical

method, and our results are presented in comparison with

the results of the FEM and experimental results.

2. Formula Problem

2.1. Model and Assumptions

Figure 1(a) shows a TLM with AMSPMs which con-

sists of a single-sided PM mover and coreless stator wind-

ings. The magnet topologies are composed with AMPMs

and iron poles to create a magnetic flux path. For the

stator windings, three-phase distributed windings are

wrapped in a non-magnetic metal frame and located in

the air gap between the outer magnet and the inner iron

core.

Figure 1(b) shows TLM with AMDPMs which consists

of a double-sided PM mover and coreless stator windings.

The magnet topologies are composed with AMPMs and

iron poles to create a magnetic flux path. For the stator

windings, three-phase distributed windings are wrapped

in a non-magnetic metal frame and located in the air gap

between the outer and inner magnets. To be able to apply

the analytical methods, this paper assumes that the

permeability of the iron core is infinite. The relative recoil

permeability of the winding and PM regions are also

assumed to be unified [6]. Note that the magnetization of

the PM mover composed of AMPMs and iron poles

cannot be homogeneously modeled resulting in compli-

cated boundary conditions in the z-direction [3, 5]. For a

simplified analytical model, this paper assumed that the

permeability of the iron poles is a unity, because the iron

poles do not significantly affect the magnetic field charac-

teristics for the inductance calculation in the coil regions.

2.2. Analytical Model

To derive the solutions of the armature reaction field,

the analytical model involves three regions as shown in

Figs. 2 and 3: the outer air gap region (I), the coreless

winding region (II), and the inner air gap region (III). Rom,

Rim, Roc, Ric, tc, Ro, and Ri are the outer magnet outer

radius, the outer magnet inner radius, the coreless wind-

ing outer radius, the coreless winding inner radius, the

axial lengths of a slot, the inner iron core or inner magnet

outer radius, and the inner iron core or inner magnet inner

radius, respectively. The permeability of the iron-pole

materials used in this model is assumed to be equal to that

of air.

The current distribution J is slightly altered to allow a

feasible computation without decreasing the accuracy too

much. The Fourier series expansions of the stator current

densities of the phase A, B, and C presented in Fig. 4, are

given as [7]

Fig. 1. (Color online) Structure of a TLM with AMPMs: (a)

single-sided model and (b) double-sided model.

Fig. 2. (Color online) Analytical model of a TLM with AMSPMs for the prediction of the armature reaction field: (a) single-sided

model and (b) simplified analytical model.
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(1)

where C1 = RicRoc(Ric + Roc), C2 = 1/(Ric + Roc), kn = nπ/τ,

and τ is the pole pitch. The exact solution with a current

distribution uniform in radius contains integrals of Bessel

functions that pose a significant analytical burden, so

coefficients C1 and C2 in (1) are used to represent the

current density component (Jan, Jbn, Jcn) to a function of r

[8]. In Fig. 4, the current density Jo is given by

(2)

where Nturn and i are the number of conductors per pole

and the phase current, respectively. Sc is the area of

conductors per pole on the r − z plane and is calculated as
Sc = (Ric – Roc)t/3. The current density component can be

obtained by the Fourier series expansion:

(3)

where ia, ib, and ic are the currents, flowing in the each

phase coil. Figs. 2 and 3 show the simplified analytical

model for calculating the armature reaction field produced

by the coils. From the analytical model of the polar

coordinate system, the magnetic vector potential A has z-

direction distributions according to space harmonic

coefficients of kn and mk, and its amplitude has a changing

time-dependent radial direction vector: 

(4)

Since there is no magnetization in the coil region, from

Maxwell’s equations,

(5)

And, the relation of B, H and M in the coil region is

defined as followings

(6)

where B, H, and M are the magnetic flux density,

magnetic field intensity, and magnetization, respectively.

The magnetic vector potential A is defined as 

(7)

Because of the cylindrical geometry, the magnetic vector

potential has only Aθ, which is independent of θ. In non-

conducting regions, the magnetic vector potential A is

assumed to have Coulomb gauge dependence and satisfies
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Fig. 4. (Color online) Current density model of the coreless

windings.

Fig. 3. (Color online) Analytical model of a TLM with AMDPMs for the prediction of the armature reaction field: (a) Double-

sided model and (b) Simplified analytical model.
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the Poisson equation [9]

(8)

The superscript I, II, and III denote the outer air gap

region, the coreless winding region, and the inner air gap

region. By substituting (4) into (8) and simplifying mk to

1, the following equations can be obtained:

(9)

where I1 and K1 are the modified Bessel functions of the

first and second kind of order 1, respectively. Finally, the

normal magnetic flux density (B
r
) and tangential magnetic

flux density (B
z
) due to the armature reaction are derived

by using the definition of the magnetic vector potential:

,

(10)

By substituting (9) into (10), the following equations can

be obtained:

(11)

where I0 and K0 are the modified Bessel functions of the

first and second kind of order zero. The undefined

coefficients An
I,II,III and Bn

I,II,III can be determined by using

each boundary condition. The boundary conditions used

in the analytical prediction of the magnetic vector potential

due to the armature reaction field are shown in Table 1

[10]:

2.3. Flux-linkage and Inductance Calculations

The analysis of the inductance is significant for high-

precision motion control of electromagnetic machines. In

addition, predicting the inductance, which is one of the

circuit parameters, is important because that has an effect

on the power angle, reactive power, and efficiency. The

self-inductance, Lself, is obtained from the current flowing

in a coil, and the mutual inductance, M, is defined in

terms of the flux in one coil due to the current in another.

Flux linkage per one turn due to the armature reaction

field is given by

 

 

 (12)

The flux linkage (λcoil) per phase due to the armature

reaction field can be derived as

(13)

If the leakage inductance is neglected, the self-inductance

per phase (Lself) can be derived using the following equation:

(14)

The self-inductance of phase A can be calculated given
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Table 1. Boundary conditions of the Machines with single-

sided and double-sided PMs.
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120 electrical degrees apart, the mutual inductance is

expressed as follows:

(15)

Consequently, if the leakage inductance is ignored, the

synchronous inductance (Ls) can be derived using the

following equation:

(16)

where φa is the flux linking for phase A.

3. Results and Discussion

The design parameters of the machines to which each

method (the analytical model, the FE model, and the

manufactured model) has been applied are shown in

Table 2. As shown in Fig. 5, we manufactured two sets of

TLMs, and the two machines are coupled to measure their

electrical characteristics. In this study, the machines are

divided into a TLM with AMSPMs and a TLM with

AMDPMs based on the presence of the PMs between Rio

and Rii. 

3.1. Magnetic Field Characteristics by Winding Cur-

rents

Figure 6 shows the flux lines produced by coils, obtained

from 2D FEM. Although FEM is time consuming, it can

achieve high-precision results, because it takes nonlinear

characteristics and flux leakage into consideration. There-

fore, FEM is used to validate the established analytical

models. As mentioned above, by comparing analytical

predictions and the FEM results, the validity of the

armature reaction field predictions is verified. Figs. 7 and

8 show the comparison of the simplified analytical method

and FEM results for radial and axial magnetic flux density

distribution. Distortion has occurred in the magnetic field

characteristics due to the influence of the iron pole, as

shown in Figs. 7 and 8. In the coil region, however, the

simplified structure FEM results presented in Figs. 7(b)

M = 
1

2
---– Lself

φa = Lself ia + Mib + Mic

= 
3

2
---Lself ia

= Lsia

Table 2. Design parameters of Single-sided and Double-sided PMTLM.

Single-sided Machine Double-sided Machine Symbol Value Unit

Outer radius of the outer magnet Roo 50 mm

Inner radius of the outer magnet Inner radius of the outer iron core Roi 40 mm

Outer radius of the inner magnet Rio 25 mm

Inner radius of the inner magnet Inner radius of the inner iron core Rii 15 mm

Outer radius of the coreless winding Roc 37 mm

Inner radius of the coreless winding Roi 29.5 mm

Pole pitch τ 30 mm

Axial length of an iron pole τi 10 mm

Axial length of an permanent magnet τm 20 mm

Radius of the coil rc 0.3 mm

Number of turns per slot Nturn 200 −

Remanent flux density Br 1.3 T

Fig. 6. (Color online) Flux lines produced by coils, obtained from 2D FE analyses: (a) TLM with AMSPMs and (b) TLM with

AMDPMs.

Fig. 5. (Color online) Manufactured two set of TLM with

AMSPMs and AMDPMs.
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and 8(b) are obtained by non-linear analysis, and the

results predicted by the analytical solution of (11) are

shown to be in good agreement with FEM results. As

mentioned above, the small percentage of iron pole and

large magnetic air gap have little effect on the magnetic

field characteristics of the intermediate portion of the coil

that is used to obtain the inductance.

3.2. Inductance calculations

The inductance results from analytical, 2D FEM, and

experimental measurement are presented in Table 3. The

analytical results are validated extensively with FEM.

Therefore, this comparison confirms the validity of the

magnetic field distribution produced by stator coil currents

presented in this paper. The value of the inductance was

obtained using an RLC meter (PM 6306) at different

condition. A first measurement was performed for only

stator windings assembly in air, as shown in Fig. 9(a).

The inductance value is substantially constant within the

range 100 Hz and equal to 6.55 mH for each machine.

The measurement was repeated after the coils were

combined with magnet mover and connected in series, as

shown in Fig. 9(b). The inductance value is also sub-

Fig. 7. (Color online) Comparison of the armature reaction

field components in the various regions of the TLM with

AMSPMs: (a) Inner air region, (b) Coil region, and (c) Outer

air region.

Fig. 8. (Color online) Comparison of the armature reaction

field components in the various regions of the TLM with

AMDPMs: (a) Inner air region, (b) Coil region, and (c) Outer

air region.

Table 3. Comparison of the analytical inductance with FEM,

and measurement.

Inductance Analytical
Non-linear 

FEM
Measurements

Single-sided Type 9.035 [mH] 10.16 [mH] 8.19 [mH]

Double-sided Type 7.1 [mH] 7.6 [mH] 7.3667 [mH]
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stantially constant within the range 100 Hz and equal to

8.19 mH for single-sided machine and 7.3667 mH for

double-sided machine. We conclude that these results are

better agreement with FE results than the results obtained

from first inductance measurement method. In the case of

a TLM with AMSPMs, the armature reaction field is

relatively large due to the influence of the iron core as

compared to that of TLM with AMDPMs. Based on the

analytical results, it can be confirmed that the inductance

having the complex structure of a slotless type does not

have a significant effect, even excluding the iron pole.

4. Conclusion

This paper dealt with comparative study of TLM with

AMSPMs and AMDPMs. The boundary conditions of

TLM with AMSPMs and AMDPMs were very compli-

cated to approach analytically, because magnet topologies

are composed of PMs and iron poles, and they cannot be

homogeneously modeled. To simplify this problem, this

paper modeled the iron poles as radial magnetized PMs.

This assumption simplified the boundary conditions. On

the basis of 2D analytical solutions, this paper has

predicted magnetic field calculations in three regions.

Due to the influence of the iron pole, the magnetic field

characteristics are distorted in the inner and outer air

regions. However, the magnetic field characteristics for

the inductance calculation in the coil regions were not

significantly affected by the iron poles. Two different

types of machine were used to verify the validity of these

methods, and the results were compared with the FEM

results. Winding inductance was subsequently derived.

Numerical computations were used to verify the analytical

models. Furthermore, parameter measurements were con-

ducted to validate the analytical methods. The results of

these simplified analytical models agree with both non-

linear 2D FEM results and measurements of fabricated

TLMs. The effectiveness of this modeling suggests that

this method could be implemented in the analysis of

slotless type electromagnetic machines.
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