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Uncertainties in loads, materials and manufacturing quality must be considered during electromagnetic devices

design. This paper presents an effective methodology for robust optimization design based on the variance

decomposition in order to keep higher accuracy of the robustness prediction. Sobol’ theory is employed to

estimate the response variance under some specific tolerance in design variables. Then, an optimal design is

obtained by adding a criterion of response variance upon typical optimization problems as a constraint of the

optimization. The main contribution of this paper is that the proposed method applies the variance

decomposition to obtain a more accurate variance of the response, as well save the computational cost. The

performance and robustness of the proposed algorithms are investigated through a numerical experiment with

both an analytic function and the TEAM 22 problem.
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1. Introduction

The conventional designs may not always be robust

against the interference due to uncertainties that exist in

different sources. In order to improve the performance of

a product, robust optimization is employed to tackle the

uncertainties. The target of robust design is to improve

the quality of products by reducing their sensitivity to

variations, thereby reducing the effects of variability [1].

A number of robust optimization methods have been

proposed to be applied to electromagnetic devices [2-6].

A large part of the optimization approaches use the gradi-

ent index (GI) of parameters to represent the robustness

due to its simplicity and low computational cost [7]. GI

methods based on the sensitivity analysis (SA), especially

the first-order SA, are extensively reported to evaluate the

robustness of a design [2, 3]. In order to provide more

accurate results under uncertainty, higher order (i.e., second-

order) sensitivity analysis is employed in Ref. [4]. For the

same reason, a second-order sensitivity assisted worst

case optimization (SA-WCO) method has been proposed

in Ref. [5], providing a faster calculation while keeping

high accuracy. Moreover, the values obtained from SA

are modified utilizing Taguchi’s quality method (TM) to

improve the accuracy in Ref. [6]. 

In practice, dimensions of electromagnetic devices may

vary within the range of tolerances due to manufacturing

process and cost limitation [8]. However, GI-based robust

designs are only based on the local derivative at the

nominal value. Although these designs are reported pro-

viding good performance, they still are grouped to the

deterministic robust optimizations that essentially neglect

information surrounding the nominal value. Thus, in con-

trast to the previous works, we develop a more accurate

evaluation of robustness regarding problems having tole-

rances in design variables. Here, we calculate the variance

of the response through a fully quantitative variance-based

global analysis, which is also called Sobol’ variance de-

composition [9, 10]. This decomposition identifies the

most important sources of the uncertainty and focus

attention only on those dimensions of input space. Then

the variance of the response would be briefly denoted by

the main contributed terms. More details about the theory

and applications can be found in the Ref. [11-14].

This paper, in the view of above, proposes a robust

optimization method concerning tolerances in design vari-

ables. The response variance with respect to ranges of

design variables is estimated based on Sobol’ variance

decomposition theory. The formulation of optimization is

defined by adding a criterion of response variance upon
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the typical optimization problem as a constraint. The pro-

posed method is applied to two examples, one an analytic

function used to demonstrate the calculations and to pro-

vide a comparison with other variance estimated methods,

the second a TEAM 22 problem is used to demonstrate its

validity for electromagnetic devices optimization.

2. Robust Optimization Algorithm Based on 
Sensitivity Analysis

2.1. Nonrobust formulation

Generally, the formula of typical optimization aiming to

minimize an objective function f (x), subject to constraint

g(x), is expressed as

(1)

where xL and xU are the lower and upper boundaries of

the design variable vector x, respectively. It is clear that

there is no robustness information involved in this

optimization definition. To illustrate the idea, an example

function f (x) is chosen with respect to one-dimensional

variable x with tolerance assumed as Δ, as shown in Fig.

1. Point A will be chosen as the optimal design by using

optimization algorithm (1), however it will bring sharply

increase when x is perturbed from the nominal value.

2.2. Classical robust optimization using gradient index

In classical robust optimization, the sensitivity index

of the objective function is consideredby estimating the

maximum partial derivation, thus for a n-dimensional

vector of design variables x1, x2, ... , xn, GI (x) defined as

(2)

Based on (2), the classical robust optimization algorithm

is formulated as follows

(3)

where F is the target value of objective function f (x)

assuming the design is a target-aimed design, whose

objective function value is decided by the designers.

Typically F is set to the optimal value obtained by solving

the typical nonrobust optimization problem in (1). When

this method is applied to the example function in Fig. 1,

the most probable result is point B, where the GI meets

zero. However, the absolute deviation ΔfB over the range

of variable (i.e., 2Δ) may exceed an acceptable tolerance

of response. Consequently, point B may not be a robust

design as desired.

2.3. Proposed optimization using variance decomposi-

tion method

A robust optimization should concern the absolute

change of response introduced by the input variations. As

the example in Fig. 1, another local optimum point C

giving a smaller change ΔfC becomes an alternative result

for the robust optimization problem. The most common

index is the response variance to measure output variation

due to tolerances in design variables. Therefore, we

propose a robust optimization as follows

(4)

where V is the response variance, Vcrit is the boundary of

variance, which is defined according to the specific

problem.

One way to get the variance of the response, denoted as

V, is a point method where, through the transmission of

moments using Taylor series expanded about the mean,

approximation of the variance in matrix form is given as

(5)

where µx and Vx are the means and the covariance matrix

of the design variables.

Minimize : f x( )
subject to : g x( ) 0≤
 xL x xU≤ ≤

GI x( ) = max
1 i n≤ ≤

df x( )
dxi

-------------

Minimize : Gi x( )
Subject to : g x( ) 0≤
 f x( ) F≅
 xL x xU≤ ≤
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Another way to get the variances uses a global-based

method sometimes called analysis of variance. More

particularly, in this paper we develop the Sobol’ variance

decomposition to provide variance. Compared with the

Taylor series-based approach based on the point value, it

considers the variance of response over the entire feasible

region, which specifies the range of x. Moreover, it

assigns the response variance to each design variable and

the cross terms of design variables. Generally, for electro-

magnetic problems, analytic Sobol’ method may become

difficult to be implemented since the response model is

nonlinear and complex. Hence, Monte Carlo simulation is

employed to estimate the Sobol’ indices. Consider two

random vectors x and x', and let x = (y, z) and x' = (y, z'),

where y, z and z' are the subsets of the corresponding

vector. After N trials, crude Monte Carlo estimates are

obtained as [10]

(6)

where f0 is the mean value of the response function, V f is

the variance of response, Vy

f is the variance of f (x) intro-

duced by the subset of variables y, and →p implies ab-

solute convergence. Therefore, the global sensitivity mea-

sures, called first-order Sobol’ indices, are provided by

(7)

where  and  are the Sobol’ index and the variance

of function f (x) with respect to the ith element of x. In

practice, the sum of first-order Sobol’ indices, denoted as

S(1), usually makes up a large part of the whole variance.

If all or part of the first order Sobol’s index satisfies the

condition 1 − S(1) < ε, where ε is a small number (in this

paper, ε = 0.1), the rest of Sobol’ indices are negligible.

Thus, the corresponding sum of variance V (1) is obtained

and used to represent the response variation due to

tolerances in design variables.

Latin Hypercube sampling is used in this paper to gene-

rate sample points because of its significant less compu-

tational expense. Assume that M sample sets with respect

to n variables are generated as {x1
(1), x2

(1), ... , xn
(1)}, {x1

(2),

x2
(2), ... , xn

(2)}, ... , {x1
(M), x2

(M), ... , xn
(M)} using LH

sampling. Here, the superscripts (1), (2), … , (M) indicate the

sequential number of M sampling data for each variable xi
(i = 1, 2, … , n). To accomplish variance estimation given

in (6), extra sets of samples are needed to bring in. There

is no doubt that there are many ways to rearrange the

samples based on (6). The basic principal is holding the

variable to be studied in the original place while changing

the sequences of the other terms. For example, to

calculate , another M sets of samples {x1
(1), x2

(2), ... ,

xn
(2)}, {x1

(2), x2
(3), ... , xn

(3)}, ... , {x1
(M), x2

(1), ... , xn
(1)}

should be formed. Similarly, n-1 else sets of samples

would be recombined to study the other n-1 variables. In

summary, the general framework of the proposed robust

optimization algorithm is depicted in Fig. 2, and it can be

described in the following steps:

(1) According to the information on the uncertain para-

meters and the system response, determine the basic

optimization definitions, for example, the objective func-

tion, the tolerances, upper and lower limits of the n-di-

mensional design variables.

(2) Generate a set of random design variables x with M

samples, based on which another n sets (M × n sample

points) would be regenerated. 

(3) Get the studied responses from finite element analysis

(FEM) and construct the approximate models of the

objective function and the constraint function in (4). In

this paper, radial basis function (RBF) is employed and

considered as an accurate fit with the maximum approxi-

mation errors (percentage errors) equal to 10%.

(4) By using Sobol’ variance decomposition method,

1

N
----  

j=1
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∑ f xj( ) →
p
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Fig. 2. (Color online) Summaries of the proposed robust

optimization method.
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consider the less significant variables as deterministic

without variation, and at the same time obtain the sum of

the main contributory variances as the response variance.

(5) Run the optimization and check convergence. If

there is a feasible result, go to the 6th step; otherwise, insert

more sampling points and go to the 3rd step.

(6) Obtain the optimum design and the corresponding

objective function value.

3. Optimization Results

3.1. Analytic function

An analytic function is presented to verify the perfor-

mance of the proposed algorithm formulated as

(8)

with independent variables x = {x1, x2} uniformly dis-

tributed in the range of 0 ≤ x1, x2 ≤ 4, and the response

surface is shown in Fig. 3. In this case, assume the ranges

are set to 1 for both x1 and x2 (i.e. the tolerance is ± 0.5).

Therefore, the robust optimization problem using proposed

method is given as

(9)

(7×7) points, shown as the blue points in Fig. 4, are chosen

as the training set to construct a meta-model of response

variance based on Radius Basis Function (RBF), who can

also provide the approximate variance decomposition

value over the entire range of variables [15]. Since the

parameters have a tolerance of ± 0.5, the range of Monte

Carlo samples for one training point is graphically repre-

sented as the shaded red box in Fig. 4. For each training

point, 3000 samples are generated within the variable

range, 1000 of which are generated using Latin Hypercube

method and another 2000 points are obtained from re-

sampling. The samples are indicated by black dots in

Fig. 4. In this case, the percentage error of the approxi-

mating model by means of 49 points is 2.3%.

As shown in Fig. 3, the function f (x) has three troughs

at positions (1, 1), (1, 3) and (3, 2) with the objective

function value of 0.9444, 1.1816 and 0.7647, respectively.

Graphically, one of these three positions would be the

solution for the optimization problem in (9) under a

certain criterion of variance given as Vcrit. Another two

ways to obtain variance: Taylor series expanded based

method and Monte Carlo Simulation are employed to

calculate the response variances centered at positions (1,

1), (1, 3) and (3, 2), and the results are compared with

Sobol’-based method in Table 1. It can be seen that

results from Sobol’-based method are close to those from

MCS, which are considered accurate with a relatively

large sample size (i.e., 100,000). Moreover, the sobol’

index for x1 and x2 are generally even, thus both of the

variables take crucial parts of providing response vari-

ance. However, Taylor series gives quite different results

that could not show the real variation around the troughs

although it is slightly faster than others.

Table 2 compares the optimization results by using the

proposed algorithm under different variance criterions. It

can be found that the optimization results are changing

along with different variance criterions. Both Sobol’-based

and MCS-based optimization give reasonable results

according to Table 1. As well, the results provided by

Taylor Series Expanded shift from one trough to another,

however, the variances obtained by Taylor Series-based

method are far from the real values, which make the

robust optimization design meaningless. As to the optimi-
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Fig. 3. (Color online) Response of the analytic function.

Fig. 4. (Color online) Basic information of the optimization

definition.
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zation time for all the approaches, Taylor series-based

method shows an economical solution with the lowest

computational cost. Besides, due to the use of meta-model-

ing of response variance, the proposed Sobol’ method

turns out with an acceptable optimization time.

3.2. Electromagnetic application

This section presents the application of the proposed

method to a practical problem in electromagnetic devices

design. The example (TEAM 22 problem) chosen for

study here has been used extensively in previous studies,

and its configuration is shown in Fig. 5. We considered

the three-parameter problem presented in [2, 16, 17]. For

this problem, the shape of SMES can be defined using

three design variables that are modeled by a vector x =

{R2, H2, D2}. All random design variables are statistically

independent and distributed normally with a standard

deviation of 0.02. The parameters are summarized in

Table 2.

The following specifications have to be satisfied in this

case.

1. The energy stored in the device should be E0 = 180

MJ.

2. The mean stray field, Bstray, at 22 measurement points

along line a and line b in Fig. 5 at a distance of 10 m

should be as small as possible.

3. The materials of the coils must not exceed the pre-

scribed bounds established by the quench condition, ap-

proximated by the equation

(10)

Using the proposed method, a robust optimization is

formulated as follows

J  = 6.4– B  +54

Table 1. Comparison of response variance at three troughs.

x = (x1, x2) f (x)
Variance V

Taylor Series Sobol’ MCS (100,000 samples)

(1, 3) 1.1816 4.50×10−4
2.60×10−3

(Sx1=0.52, Sx2=0.48)
2.61×10−3

(1, 1) 0.9444 1.84×10−3
8.69×10−3

(Sx1=0.48, Sx2=0.52)
8.72×10−3

(3, 2) 0.7647 9.35×10−4
2.95×10−2

(Sx1=0.48, Sx2=0.52)
2.99×10−2

Average time (s) − 0.337 0.533 0.557

Table 2. Optimization results of analytic function.

Method
Vcrit Average 

time (s)5×10−4 5×10−3 2×10−2 5×10−2

Taylor series (1, 3) (3,2) (3,2) (3,2) 10.21

Sobol’ N/A (1,3) (1,1) (3,2) 61.02

MCS N/A (1,3) (1,1) (3,2) 206.08

Fig. 5. Robust configuration of the TEAM 22 problem.

Table 3. TEAM 22 parameters.

R1

m

R2

m

H1/2

m

H2/2

m

D1

m

D2

m

J1 

A/mm2

J2 

A/mm2

Lower limit − 2.6 − 0.204 − 0.1 − −

Upper limit − 3.4 − 1.1 − 0.4 − −

Fixed 2.0 − 0.8 − 0.27 − 22.5 −22.5
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(11)

where  is the estimated variance of objective function

f (x), Bn = 3.0 × 10−3 T, E is the stored magnetic energy in

the device, Bmax is the maximum magnetic flux density,

and the stray field Bstray is evaluated by the magnetic flux

density of each point on line a and line b.

(12)

The Sobol’ variance decomposition is performed based

on the approximated model of f (x) by means of the FEM

simulations. Considering the design variables are at their

initial values {3, 1, 0.2} to roughly examine the first-

order Sobol’ indices. Each index is obtained by varying

one single variable, while the others stay constant and

equal to the initial values. In the current case, the results

of the first-order sensitivity indices for the objective

function are shown in Fig. 6. Graphically, as each variable

scans in the range of lower and upper limits, the sensi-

tivity indices fluctuate all the time. As shown in Fig. 6,

none of the sensitivity indices stay large or small for the

whole time, thus all the design variables should be regarded

as random variables with certain standard deviations. To

verify whether the sum of the first-order variance corre-

sponding to three variables (i.e., ,  and ) could

represent the total variance, 20 point are chosen evenly in

every subfigure of Fig. 6. The mean value of the sum of

first-order Sobol’ indices reaches 0.934, which means that

the symbol  in (11) is denoted as the sum of , 

and .

In order to save the computational cost, especially the

cost of finite element computation, both the objective

Minimize : f x( ) = 
Bstray

2

Bn

2
------------ + 

E E0–

E0

------------------

subject to : V̂ Vcrit≤

 J  = +6.4 Bmax −54 0≤

 R1

D1

2
------+ R2<

D2

2
------+

 xL x xU≤ ≤

V̂

Bstray

2
 = 

1

22
------  

i=1

22

∑Bs ,i

2

VR
2

f
VH

2

f
VD

2

f

V̂ VR
2

f
VH

2

f

VD
2

f

Fig. 6. Non-dimensional first-order sensitivity indices.

Table 4. Optimization results.

Vcrit

(×10−3)
Method

R2

(m)

H2

(m)

D2

(m)
f (x)

(×10−3)

V

(×10−3)

Numbers of function call Time

(s)f (x) constraint

2

Sobol’ 3.255 0.569 0.291 0.154 1.49 2.54 2156 4213 155.3

Taylor Series 3.143 0.580 0.312 0.109 1.55 3.98 3773 4319 124.2

MCS 3.269 0.587 0.279 0.161 1.89 1.89 2175 4253 5882.6

3 Sobol’ 3.109 0.785 0.236 0.106 2.92 4.67 3028 5796 143.6

5 Sobol’ 3.08 0.478 0.394 0.088 4.23 5.97 2408 4208 163.8

V̂
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function and the constraint function are approximated

adopting the RBF method. 3000 samples are chosen to

bulid the approximate models with the percentage error of

5.6%, 6.8% and 2.8% for the objective function, the

maximum magnetic flux density and the variance, respec-

tively. Since genetic algorithm (GA) works well in obtain-

ing global optimum, it is chosen as the solver in the

proposed robust optimization. The GA parameters are set

at a population size of 50, a cross-over rate of 0.5, and a

mutation rate of 0.01. 

In this paper, three variance criterions are chosen to

demonstrate the application of proposed method. By apply-

ing (11), the optimization results under different criterions

are listed in Table 4. When Vcrit is set to a relatively

smaller value (i.e. Vcrit = 2 × 10−3), optimal results from

Sobol’-based method (Design 1) are compared with those

using Taylor series-based method and MCS. Considering

the evaluation of response variance, the proposed Sobol’-

based method gives a closer approximated value (1.95 ×

10−3 out of 2.54 × 10−3) than Taylor series-based method,

whose estimated value is only 1.55 × 10−3 while the real

variance reaches 4.08 × 10−3. As to the computational

cost, there is no obvious difference in the numbers of

function call; however, MCS takes much more time than

the proposed method and Taylor series-based method.

From the results, the proposed method shows an econo-

mical solution with much lower computational cost over

MCS, as well provides a more accurate solution than

Taylor series-based method.

As Vcrit becomes larger to be 3 × 10−3 (Design 2) and

5 × 10−3 (Design 3), different results providing smaller

objective function values are given. Comparison between

three designs using proposed method is presented as

histogram in Fig. 7. To get the distribution of objective

function, 10,000 samples are randomly chosen within the

variable ranges for each design. It is seen that a smaller

variance criterion let the optimal solution turn out more

robust; however, the mean value of the objective function

appears larger. This means that the optimization solution

with a restrictive variance criterion would compromise in

performance, and designers can choose a proper design

according to the importance between performance and

robustness. 

4. Conclusion

In this paper, we proposed the usage of Sobol’ variance

decomposition to calculate the response variance consider-

ing tolerances in design variables. An optimal result hav-

ing better robustness can be obtained by choosing a

variance criterion as an optimization constraint. Our

proposal was tested on both an analytic function and the

TEAM 22 problem, and the results have been compared

Fig. 7. (Color online) Comparison of objective function dis-

tributions.
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with those from other variance evaluation approaches.

The accuracy and efficiency of the proposed method has

been demonstrated. The designers can select their best

designs through balancing good performance against

higher robustness by setting different variance criterions.
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