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In this paper, we suggest reliability as a metric to evaluate the robustness of a design for the optimal design of

electromagnetic devices, with respect to constraints under the uncertainties in design variables. For fast

numerical efficiency, we applied the sensitivity-assisted Monte Carlo simulation (S-MCS) method to perform

reliability calculation. Furthermore, we incorporated the S-MCS with single-objective and multi-objective

particle swarm optimization algorithms to achieve reliability-based optimal designs, undertaking probabilistic

constraint and multi-objective optimization approaches, respectively. We validated the performance of the

developed optimization algorithms through application to the optimal design of a superconducting magnetic

energy storage system. 
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1. Introduction

Recent optimal design algorithms of inverse electro-

magnetic problems have paid attention to uncertainties in

design variables caused by, for example, manufacturing

tolerance, uneven material properties, and the imperfect

control of operating conditions. These uncertainties often

force the deterministic optimal design to violate some

constraints, by moving it to the infeasible region [1, 2]. To

deal with uncertainties, robust optimal design methods have

been developed to improve product quality, by minimizing

variations of the system performance [2-4]. However, a

reliable algorithm that guarantees the constraint condition

in probabilistic terms against uncertain design variables has

not yet been popularly presented in the area of electrical

engineering. In the fields of mechanical and structural

design, the concept of making a trade-off between perfor-

mance and reliability has recently been addressed, to increase

the robustness of constraint functions [5-7]. 

In this paper, the reliability of a design is defined as the

probability of remaining in the feasible region with respect

to a constraint function, when the design is perturbed by

uncertainties in the design variables. In mechanical engineer-

ing, there have been numerical attempts to evaluate reliability,

such as Monte Carlo simulation (MCS), and first-order

reliability methods (FORM) [7]. The MCS method is a

sampling-based method, and it is known to be accurate only

if the number of samples is large enough. Due to the huge

computational effort, this method is not practical for

engineering problems that normally involve performance

analysis by numerical methods, such as the finite element

method (FEM). The FORM is an optimization-based method,

which calculates the reliability based on the shortest distance

from a design to a constraint surface, in a normalized

design space. This method, however, is also expensive to

apply to an engineering problem, since the reliability calcu-

lation itself needs to solve another independent optimi-

zation problem.

It has been difficult to find a practical and guaranteed

reliability calculation algorithm that can be applied to a

reliability-based optimal design of electromagnetic devices

subject to performance related constraints that involve

numerical analysis methods, such as the FEM.

In this paper, in order to achieve a constraint-reliable

optimal design against uncertain design variables, the sensi-

tivity-assisted Monte Carlo simulation method is applied,

for numerically efficient reliability calculation. Furthermore,

based on the fast reliability calculation, constraint reliability-

based and multi-objective reliability-based optimal design

algorithms are developed. The validity of the developed

algorithms is investigated through applications to an analytic

example, and to a superconducting magnetic energy storage

©The Korean Magnetics Society. All rights reserved.

*Corresponding author: Tel: +82-43-274-2426

Fax: +82-43-274-2426, e-mail: kohcs@chungbuk.ac.kr 

ISSN (Print) 1226-1750
ISSN (Online) 2233-6656



Journal of Magnetics, Vol. 19, No. 3, September 2014 − 267 −

(SMES) system.

2. Classical/Deterministic Optimization 
Algorithm

In a classical optimization problem that does not take into

account any uncertainties in design variables, the mathe-

matic optimization model is formulated as follows - for ex-

ample, when the objective function f (·) is to be minimized,

subject to a set of constraints g(·) ≥ 0:

 (1)

where, d=[d1,d2,…,dN]T is the vector of deterministic

design variables of which every element does not include

uncertainty; dL and dU are the upper and lower bounds,

respectively, and M is the number of constraint functions.

This method often locates its optimal design near to, or

on the constraint surface, as shown in Fig. 1. If the design

is perturbed by a small variation, the deterministic optimum

may easily move to the infeasible region, such as design A*

in Fig. 1, to violate one or more constraints. On the other

hand, design B in Fig. 1 is considered a reliable optimal

design, because it will remain in the feasible region, even

with uncertainties in the design variables. In the robust

optimization and reliability-based optimizations, the reliable

design B is preferred to design A, even though its perfor-

mance is not as satisfactory as that of A.

3. Reliability Based Optimal Design 
Algorithms

For a specified engineering problem, the modeling of

uncertainty needs a lot of information. In this paper, for

simplicity, the following assumptions are made:

1) For reliability analysis, every design variable has un-

certainty that follows a Gaussian distribution with zero

mean value and standard deviation (σ), and the design is

described as x. Based on the confidence interval, for a

given design x = [x1, x2, …, xN]T, the uncertainty set (or

uncertain range) U(x) is defined as follows:

(2)

where, ξ is any perturbed design, and k is a constant that

is decided according to the required confidence level. For

example, k will be 1.96, for the confidence level of 95%.

2) The uncertainties are independent of each other.

Based on the above assumptions, two reliability-based

optimal design (RBOD) algorithms are investigated below.

3.1. Probabilistic Constraint Approach (PCA)

In this method, the reliability of a design is treated as

probabilistic constraints, so that the reliability for each con-

straint may be higher than or equal to a required value. The

formulation of the deterministic optimization problem (1) is

changed as follows: 

(3)

where, Rt,i is the target reliability for the i-th constraint

function, which will be decided by the confidence level of

the optimal design.

By solving (3) using a global optimization method, such

as particle swarm optimization (PSO) and genetic algorithms,

a global constraint-reliable optimal design will be obtained,

which guarantees the target reliability for each constraint.

3.2. Multi-Objective Functions Approach (MOFA)

This method treats the reliability as another independent

objective function to be maximized. For a problem includ-

ing multiple constraint functions, the system reliability is

Fig. 1. (Color online) Optimal designs with uncertain design variables, where the filled gray regions are uncertain ranges.
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defined as the minimum one among all the constraint

reliabilities.

In considering optimizing the targets of nominal objective

function and system reliability, the deterministic optimi-

zation problem (1) is transferred into:

(4)

In solution of (4), a multi-objective global optimization

algorithm, such as the multi-guider cross-searching multi-

objective PSO (MGC-PSO) algorithm [8] or non-dominated

sorting genetic algorithm-II [9], can be applied.

It should be noted that this method gives a Pareto-optimal

set, instead of just one global optimal solution, as in the

PCA. The Pareto front includes designs, which range from

the design with the best performance and lowest reliability,

to that with the worst objective performance and highest

reliability value. Therefore, a proper optimal design will be

selected, according to a designer’s requirement.

4. Reliability Calculation Methods

4.1. Conventional Monte Carlo Simulation (MCS)

Method

In the conventional MCS method, the reliability of a

given design x with respect to the i-th constraint gi(x) ≥ 0 is

numerically calculated, by using the following procedure.

1) Generate Nt testing points in the uncertainty set U(x),

as shown in Fig. 2;

2) For all testing points, calculate the constraint function

values, and check if they satisfy the i-th constraint function

or not;

3) Evaluate the reliability, as follows:

(5)

where, n is the number of testing points that satisfy the i-

th constraint.

It is obvious from (5) that the accuracy of reliability

prediction is proportional to the total number of testing

points. Usually, as many testing points as possible are re-

commended; but this is almost impossible for an engineer-

ing application. The selection of Nt is normally based on

the probability of failure pf = 1−Rt. Nt is generally equal to

100/pf. For example, if the target reliability is 99%, the

number of test points should be at least 10,000. Therefore,

if the required reliability is very high, it makes the method

very time-consuming.

4.2. Sensitivity-Assisted Monte Carlo Simulation (S-

MCS) Method

Thanks to modern mass production technologies, the

standard deviation of the uncertain design variable will be

kept very small. The corresponding uncertainty range is

also quite narrow, even when the confidence level is very

high (e.g., 99%).

For a testing point ξ∈U(x), the i-th constraint function

value can be linearly approximated as follows:

(6-a)

(6-b)

where, the gradient vector of the constraint function gi(x)

is calculated by using design sensitivity analysis with the

help of the FEM, as follows [10]:

(7)

 (8)

where, R is the residual vector from the Galerkin approxi-

mation; ν is the non-linear magnetic reluctivity; A is the

magnetic vector potential; λ is the adjoint variable; K and

 are linear and non-linear parts of the stiffness matrix;

and other symbols have their usual meanings in the FEM.

Once the gradient vector of the constraint function is

computed from (7) and (8), the constraint function can be

treated as an analytic one, so that using (5), the reliability

evaluation will be efficiently performed.

The evaluation of the reliability in this method consumes

at most around (1+M) times of analyses, using the FEM

without regard to the number of testing points; while the

conventional MCS requires as many as the number of test-

ing points. This reveals that the proposed S-MCS method is

numerically efficient. For some problems in which design

sensitivity analysis by FEM is not available, or for large-

scale nonlinear problems, the Kriging surrogate model can

K

Fig. 2. (Color online) Monte Carlo simulation method, where

100,000 testing points are generated in the uncertain range,

with the confidence level of 95%, and σ1 = σ2 = 0.5.
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be used to perform performance and sensitivity approxi-

mation [11], so as to decrease expensive cost for reliability

analysis and optimization.

4.3. Reliability Calculation Results

In order to check the accuracy of the reliabilities calcu-

lated from the proposed S-MCS method, two geometric

constraints, as shown in Fig. 3, with two uncertain design

variables, xi ~ N (μi, σi = 0.3), (i = 1, 2), are investigated as:

(9-a)

(9-b)

The gradient vectors of the two constraints are derived as

follows:

(10-a)

(10-b)

In the reliability calculation, the confidence level and the

number of testing points are set to 95% and one million,

respectively.

For the three test designs A, B, and C in Fig. 3, the

reliabilities are calculated by using the MCS and the

proposed S-MCS methods, and are compared in Table 1. It

is found that the reliabilities calculated from S-MCS show

good agreement with those from MCS, with the maximum

error of 0.886%.

5. Optimization Results of SMES

The developed reliability-based global optimization

algorithms are applied to TEAM problem 22, the optimal

design of a superconducting magnetic energy storage

system shown in Fig. 4 [12]. The optimization target is to

find the best combination of the geometric parameters (R1,

H1, D1, R2, H2, D2) and current densities (J1, J2) of current

carrying coils, by satisfying the following requirements:

− The stored total energy is Eref =180 MJ;

− The magnetic stray field Bstray, evaluated by 21 sampl-

ing points on lines a and b marked in Fig. 4, is minimized.

Furthermore, the problem should satisfy the following

constraints, as shown in Fig. 5, to maintain the supercon-

ducting state of the coils:

(11)

Fig. 3. Constraint functions.

Table 1. Comparison of reliability calculations.

Constraints Designs*
Reliability (R)

MCS S-MCS Error (%)

g1(x) ≥ 0

A 0.7967 0.7992 0.314

B 0.9006 0.8946 0.666

C 0.9585 0.9500 0.886

g2(x) ≥ 0

A 0.9989 0.9979 0.100

B 0.9995 0.9988 0.070

C 0.9992 0.9984 0.080

Function calls 1,000,000 2 -

*A(2.423,2.382), B(2.480,2.490) and C(2.568,2.554).

Fig. 4. (Color online) Configuration of SMES system.

Fig. 5. Quenching curve of NbTi-superconductor.
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where, Bmax,i is the maximum magnetic flux density in the

i-th coil.

In the classical/deterministic optimization, the optimization

problem is formulated as:

(12)

where, Bs,i is the magnetic stray field at the i-th sampling

point, and the reference stray field is Bnorm = 1 mT. The

third constraint is to keep the two coils from overlapping.

The current densities are usually controlled by a current

controller. When it needs to compensate a perturbation,

current densities are limited within a certain range. There-

fore, the current densities may deviate from the nominal

values with an unavoidable range. In this paper, uncertainties

in the current densities J = (J1, J2)
T are considered in the

optimal design, with the assumption that they follow

Gaussian distributions with nominal values of J0 = (16.78,

−15.51)T MA/m2, and standard deviations of σ = (0.179,

0.179)T MA/m2, respectively. The geometric variables (R2,

H2, and D2) are taken as deterministic design variables,

with their design ranges of 1.8 m ≤ R2 ≤ 5.0 m, 0.2 m ≤ H2

≤ 3.6 m, and 0.1 m ≤ D2 ≤ 0.8 m, respectively. Other

geometric design variables are fixed to R1 = 1.32 m, H1 =

2.14 m, and D1 = 0.59 m [1].

The accuracy and efficiency of the S-MCS method have

been discussed and compared with the conventional MCS

method and the FORM method in detail in Ref. [13], which

also investigated both the three- and eight- parameter

SMES problems. Therefore, this section only focuses on

comparison with different formulations of reliability-based

optimization.

In reliability-based optimization, the optimal design pro-

blem is formulated with the design variable vector of x =

(R2, H2, D2, J1, J2)
T, as follows:

− PCA-RBOD algorithm

(13)

where, Rt,i is the target reliability of the i-th constraint

function.

− MOFA-RBOD algorithm

(14)

For the reliability calculation using the suggested S-MCS

method, the constraints are approximated as follows:

(15)

where, the gradient vector of the constraint function with

respect to current density is obtained by using sensitivity

analysis and the FEM, as follows:

(16-a)

(16-b)

(16-c)

where, Eq. (16-a) is the system matrix, Q is the forcing

vector, and the other symbols have the same meanings as

explained in (7) and (8).

The reliabilities are calculated by using the proposed S-

MCS method with the confidence level and number of

testing points of 95% and one million, respectively. The

PSO with initial 30 particles and 200 maximum iterations is

applied for the solution of Eqs. (12) and (13), while the

MGC-PSO with initial 50 particles and 300 maximum

iterations is applied for Eq. (14) [8].

Table 2 compares the optimal designs from the proposed

PCA-RBOD algorithm under different target reliabilities,

with that obtained from the classical global optimization. It

is found that the classical optimal design has very low

reliability, and it has higher possibility, in this case 44%, of

violating the constraint for keeping the superconducting

state. In general, as the target reliability increases, the PCA-

RBOD tends to locate its optimum further inside the

feasible region.

Figs. 6(a) and (b) show the Pareto-optimal designs obtained

from the proposed MOFA-RBOD method, together with

the optimal solutions in Table 2. From Fig. 6(b), it is found

that the Pareto-front includes the optimal solutions obtained

from the PCA-RBOD with different target reliabilities, and

the design A (one of the extreme solutions) is very similar

to the classical optimal design. The Pareto-front also provides

important information for making a balance between objec-
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tive function and reliability, according to different require-

ments. For example, when the constraints are extremely

critical, design C may be selected, although it has very poor

objective value. Design B ( f = 2.55E-2, Rmin = 0.9475) may

be considered as a good solution in general purpose optimi-

zation, since it makes a good trade-off between performance

and reliability. Fig. 6(c) compares the configurations of the

coils for three representative optimal designs A, B, and C.

6. Conclusions

In this paper, with the presence of uncertainties in design

variables, two reliability-based optimal design (RBOD)

algorithms, those of probabilistic constraint (PCA) and multi-

objective functions approaches (MOFA) are developed, based

on the sensitivity-assisted reliability calculation method (S-

MCS), and applied to the optimal design of an electro-

magnetic device. From comparisons of optimization results,

the following conclusions are made:

The proposed reliability calculation method, S-MCS, speeds

up the reliability calculation, especially for the performance

related constraints, with high accuracy, under relatively small

standard deviation. In addition, the PCA-RBOD provides

only one reliable optimal design for specific target reliability;

while the Pareto-front from MOFA-RBOD gives much

more assistance to a designer, in establishing a trade-off

between performance and reliability.
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