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This paper proposes an efficient reliability-based optimization method for designing a superconducting mag-

netic energy system in presence of uncertainty. To evaluate the probability of failure of constraints, sampling-

based reliability analysis method is employed, where Monte Carlo simulation is incorporated into dynamic

Kriging models. Its main feature is to drastically reduce the numbers of iterative designs and computer simu-

lations during the optimization process without sacrificing the accuracy of reliability analysis. Through com-

parison with existing methods, the validity of the proposed method is examined with the TEAM Workshop

Problem 22.
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Introduction

Due to growing demand for high-reliability electromag-

netic (EM) devices, attention has recently focused on handling

uncertain design parameters occurring in manufacturing

process or operating condition. To incorporate such un-

certainties into an early design stage, two design appro-

aches have been used to date [1-11]: one is robust design

optimization (RDO), and the other is reliability-based

design optimization (RBDO). 

RDO improves product quality by minimizing variation

of an objective function within a feasible design space,

where constraint conditions are satisfied. Several methods,

such as worst-case scenario, gradient index, six sigma,

etc., were used to seek a robust optimum [1-6]. They do

not, however, address the quantitative probabilistic assess-

ment on nominal designs. That is, they do not provide

accurate probabilistic information as to the confidence/

reliability level, at which an EM design is achieved. On

the other hand, RBDO involves an objective function as

deterministic optimization, and also contains probabilistic

constraints where the desired probability of failure/success

is imposed [7-11]. To achieve product reliability, RBDO

probes a design point within a feasible space, which satisfies

the target failure probability of constraints prescribed. 

Recently, a few attempts have been made to perform

RBDO of EM devices. Jeung et al. [10] applied RBDO

based on the reliability index approach (RIA) to a super-

conducting magnetic energy storage (SMES) system, named

TEAM benchmark problem 22 [12]. The same design

problem was solved by another RBDO method, which

adopts the performance measure approach (PMA) for

reliability analysis of probabilistic constraints [11]. The

two methods, RIA and PMA, use different numerical

techniques to evaluate the probability of failure, but both

are based on the sensitivity information of probabilistic

constraints. Such sensitivity-based RBDO methods have a

double-loop optimization structure in common: one is for

main optimization, and the other is for reliability analysis

based on the design sensitivity. This complicated scheme

requires heavy computational cost mostly due to reliability

analysis during the RBDO process. For the above reason,

only three of the total eight design parameters of the SMES

model were selected as random variables in the previous

works [11, 12]. 

To overcome the aforementioned difficulty, this paper

proposes an efficient sampling-based RBDO method for

EM design, which utilizes the dynamic Kriging (DKG)

method and Monte Carlo simulation (MCS). Elaborate

DKG-based surrogate models are first generated in not a
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global window (whole design space) but a hyper-spherical

local window (relatively small region). Then, the failure

probability and sensitivity of probabilistic constraints are

calculated by applying MCS to surrogate models. Unlike

the sensitivity-based RBDO, the proposed optimization

scheme has a simple single-loop optimization structure,

so it can drastically reduce computational cost. Finally,

numerical efficiency and accuracy of the proposed method

is verified through three-parameter and eight-parameter

designs of the benchmark problem 22.

2. Sampling-Based RBDO

In this section, the RBDO formulation is briefly sum-

marized, and basic concepts of DKG and MCS combined

with surrogate models are explained. Lastly, the program

architecture, which integrates the sampling-based reliability

analysis method into RBDO, is presented. 

2.1. RBDO Formulation

The mathematical formulation of a RBDO model is ex-

pressed in [8-11] as:

minimize f (d)

subject to Pf (gi(x) > 0) ≤ Pt,i, i = 1, 2,...nc (1)

dL ≤ d ≤ dU, 

where f is an objective function, d is the design vector

given by d=μ(x), μ denotes the mean of a random vector

x, Pt,i is the target probability of failure with respect to the

ith constraint gi, and nc is the number of probabilistic

constraints. The symbols, dL and dU, mean the lower and

upper bounds of d. 

The failure probability Pf is evaluated using a joint

probability density function (PDF) fx(x) as:

Pf (gi(x) > 0) = (2)

where ΩFi is a failure set of ΩFi ≡ {x: gi(x) > 0} for

reliability analysis of the ith constraint function. The

symbol IΩFi
 is called an indicator function, and is defined

by

(3)

2.2. Surrogate Model

In the Kriging method, the outcomes are considered as

a realization of a stochastic process [9, 13, 14]. The goal

is to estimate a response y = [y(x1), �, y(xn)]
T with y(xi)

∈R1 based on n samples, x = [x1, �, xn]
T with xi∈Rm.

The response consists of a summation of two parts: mean

structure of the response Fβ and realization of the stochastic

process e as:

y = Fβ + e (4)

where β is the vector of regression coefficient. 

Applying fairly routine mathematical processes such as

the maximum likelihood estimator and the Lagrange

multiplier, the prediction  of (4) which interpolates the n

samples around a prediction point x0 is expressed as:

β + (y−Fβ) (5)

where f0 is the basis function vector at x0, r0 is the

correlation vector between x0 and x, and R is the sym-

metric correlation matrix. In DKG, the genetic algorithm

(GA) selects the optimal basis function set at x0 in order

that the generated surrogate model has the best accuracy.

It means the best combination up to the highest-order

basis function prescribed is decided by GA, which screens

all the foreseeable basis function sets under certain con-

vergence criteria. 

To incorporate the predictor of (5) with MCS, random

samples are generated in a hyper-spherical local window

by using the truncated Gaussian sampling (TGS) technique

[9]. The radius R of the window is determined as:

R = cβt (6)

where c is the coefficient, which is usually between 1.0

and 2.0, and βt is the target reliability index in RBDO [8,

10]. Random samples are first produced in a standard

normal space. Then, the generated samples in the hyper-

sphere of (6) are transformed back to an original space.

2.3. Probability of Failure and Its Sensitivity Calcula-

tion

MCS is applied to the surrogate model  instead of

the real constraint function gi(x). The probability con-

straint of (2) is approximated by 

, (7)

where M is the MCS sample size, xm is the mth realization

of x, and  is the failure set for the surrogate model.

The sensitivity of the approximated probability constraint

of (7) is obtained as:

μi = (x(mf ); μ) (8)

where μi is the mean of the ith random variable, M
 
f is the

number of failed samples, and  denotes the first-order

score function for μi described in [9]. As shown in (7) and

(8), the evaluation of the failure probability and its

sensitivity does not require the sensitivity of the surrogate

d R
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model but only uses function values of the surrogate model

and derivative of the input distributions [9].

2.4. Implementation 

In the sampling-based RBDO, the original MCS is

combined with accurate DKG models generated in the

local window to decide success/failure status of probabi-

listic constraints at random samples. That enables a single-

loop RBDO structure as shown in Fig. 1, which leads to a

significant saving in computational cost without degrad-

ing accuracy of reliability analysis. The optimization

program was implemented by means of Matlab functions.

The EM simulations at samples were executed with a

commercial finite element analysis (FEA) code, called

MagNet [15], and the sequential quadratic programming

algorithm was utilized for handling the constrained

optimization problem like (1).

The proposed program architecture follows as:

1) Input the number of initial sampling points, random

variables and window size (c = 1.2 is used),

2) Scan the local window space with the center of a

given design point and, if samples are founded, reuse them,

3) Generate samples in a local window by TGS,

4) Execute computer simulations at given samples,

5) Construct a surrogate model (5) based on DKG,

6) If the surrogate model satisfies a specified accuracy,

go to next step. Otherwise, insert sequential samples and

then go to step 4,

7) Assess the failure probability of failure (7) and its

sensitivity (8) by MCS, 

8) Perform RBDO formulation (1),

9) If convergence is satisfactory, stop. Otherwise, update

a design point and go to step 2.

3. Case Studies

To investigate numerical efficiency and accuracy of the

proposed RBDO method, the TEAM benchmark problem

22 of a SMES shown in Fig. 2 is considered [12]. The

SMES model has six geometric variables and two current

input variables. The benchmark problem proposes two

design problems: one is to optimize three parameters with

a multi-objective function, and the other is to optimize

eight parameters with the multi-objective function subject

to three constraints. These original design problems have

been intensively tested with various deterministic design

optimization (DDO) methods such as evolution strategy,

genetic algorithm, particle swarm population, sensitivity-

based method, etc. [16]. Herein, DDO is not dealt with

because main concern of this paper lies on the compari-

son between different RBDO methods.

3.1. Design of Three Random Parameters

The original design problem with three parameters, R2,

D2, and H2, itself is not suitable for a RBDO test example

because it has no constraint, on which a probabilistic

condition is imposed. Therefore, the original problem was

modified as follows: 

(9)

Fig. 1. Flowchart of the proposed sampling-based RBDO. 

Fig. 2. (Color online) Configuration of the SMES device. 
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where Bstray,i is the stray field calculated at the ith mea-

surement point along line a and line b, E is the stored

magnetic energy with the target value Eo of 180 MJ, and

the target probability of failure Pt,i is set to be 5% at the

ith constraint (i.e. reliability of 95%).

It is assumed that the three random parameters comply

with normal probabilistic distributions, of which standard

deviation (SD) values are presented in Table 1. The RBDO

problem of (9) was solved by using three different reliability

analysis methods: RIA, PMA, and proposed sampling-

based method. The proposed method was launched with

17 initial samples for surrogate models, and MCS com-

bined with surrogate models was carried out with 500,000

samples at each intermediate design. Starting with the

same initial point, three RBDO optima were obtained as

seen in Table 1. It is observed that when compared with

the initial design, the magnetic energy at the optimized

designs reaches closer to the target value of 180 MJ, but a

difference of 5 μT appears in the average stray field, Bstray,

at the PMA-based RBDO optimum. As to the probability

of failure evaluated, the energy constraint g1 at the initial

design has a relatively large value of 30.8%. It means that

the initial design may violate the first constraint condition

by 30.8% under the given statistical information of the

random variables. On the other hand, all probability con-

straints at the three optima satisfy the target value of 5%.

The numbers of FEA calls and iterative designs required

for the three RBDO methods are compared with each

other in Fig. 3. It is obvious that the proposed method

shows the smallest numbers in both cases. From the results,

it is evident that the proposed method drastically reduces

the computational cost for RBDO, while maintaining the

accuracy of reliability analysis. 

3.2. Design of Eight Random Parameters

The RBDO formulation of the original SMES design

problem with eight parameters is given by

(10)

where Bnorm is 200 μT, and the target probability of failure
is 5% for all constraints. The first constraint g1 prevents

two magnets from overlapping each other, and the others

Table 1. Design variables and performances at Four different

designs.

Design

variables
dL SD dU Initial

RBDO

RIA PMA Proposed

R2 (mm) 2300 10 2400 2335 2348 2346 2345

D2 (mm) 200 5 350 238 233 231 234

H2/2 (mm) 800 10 950 926.5 933.5 943.5 943

Bstray (µT) - - - 32 32 37 32

E (MJ) - - - 173 181 181 179

Pf (g1) - - - 30.80 4.33 4.73 4.62

Pf (g2) - - - 1.66×10−2 1.47×10−5 0 0

Pf (g3) - - - 0 0 0 0

Pf (g4) - - - 0 0 0 0

Other six design variables were fixed as R1=1,977 mm, D1=404 mm,
H1=1,507 mm, J1=16.30 A/mm

2, and J2=16.19 A/mm
2, and Bstray is

the average field value for 22 measurement points.

Fig. 3. Performance indicator of RBDO for three different

reliability analysis methods. 

Table 2. Design variables and performances at Four different

designs.

Design

variables
Unit dL SD dU DDO 

Proposed

RBDO

R1 mm 1000 10 2000 1296 1325

D1 mm 100 6 800 583 631

H1/2 mm 1000 10 1800 1089 1130

R2 mm 1000 10 2000 1800 1842

D2 mm 100 2 800 195 185

H2/2 mm 1000 10 1800 1513 1545

J1 A/mm2 10.00 0.01 30.00 16.695 14.849

J2 A/mm2 -30.00 0.01 -10.00 -18.910 -19.629

Bstray µT - - - 15.8 40.3

E MJ - - - 179 179

Pf (g1) % - - - 0 0

Pf (g2) % - - - 67.29 0

Pf (g3) % - - - 5.35 3.04

Iterations - - - - - 11

FEA calls - - - - - 6852
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correspond to quench conditions of the superconducting

magnets. All eight design variables are selected as random

variables, and their statistical information is described in

Table 2, where the DDO optimum is referred to [12].

Before performing RBDO, the probabilistic constraints

were assessed at the DDO point by using MCS with

500,000 samples. Table 2 shows that while the failure

probability of the third constraint slightly exceeds the target

value, the second constraint has a large failure probability

value of 67.29%. It implies there is a high possibility that

the quench may occur specifically at the inner magnet in

Fig. 2. In order to protect the magnet from such potential

quench, RBDO was executed launching at the DDO point.

Due to a heavy computational burden on the sensitivity-

based RBDO methods, the problem of (10) was solved by

only the proposed method, which started with 30 initial

samples. After 11 iterative designs and 6,852 FEA calls, a

RBDO optimum was obtained. As seen in Table 2, the

optimized design satisfies all probabilistic constraints within

the target value although Bstray becomes nearly three times

larger than the initial one.

Fig. 4 compares the configuration of two superconduct-

ing magnets between DDO and RBDO designs. Two field

distributions along line c depicted in Fig. 1 are presented

in Fig. 5, where it is clear that the maximum field value

appears at the center of the inner magnet. For better

understanding, joint PDF and quench line relevant to g2
are added in the figure. It implies that the failure occurs

over the quench line, and the PDF area belonging to the

failure region corresponds to the probability of failure. It

is observed that the RBDO design has a safety margin

enough to prevent the quench of the inner magnet.

4. Conclusion

This paper proposes a sampling-based RBDO method

to effectively incorporate uncertain parameters into EM

design problems. The results show that when compared

with the sensitivity-based RBDO methods, the proposed

method considerably reduces the numbers of FEA calls

and iterative designs required for optimization without

sacrificing the accuracy of reliability analysis. 
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