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In this paper a general 2-D model of a large air-gap synchronous machine either with non-magnetic or

magnetic core rotor is investigated and electrical characteristics of the machine are analytically calculated.

Considering the general model, analytical equations for magnetic field density in different regions of the large

air-gap machine are calculated. In addition, self and mutual inductances in the proposed model of the machine

have been developed, which are the most important parameters in the electromagnetic design and transient

analysis of synchronous machines. Finite element simulation has also been performed to verify the obtained

results from the equations. Analytical results show good agreement with FEM results. 
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1. Introduction

Synchronous machines are widely employed in high

power applications because of their higher efficiency,

higher power density, and ability to provide a system

power factor improvement. High power density electrical

machines will provide important benefits in transportation

applications such as ship propulsion systems. Larger flux

density of field winding or higher linear current density of

the armature leads to higher power density in synchron-

ous machines but both of these parameters are restricted

by iron-teeth of the stator [1].

In the air-cored machines, iron teeth of the stator are

replaced with non-magnetic support structure. Moreover,

in order to decrease the weight of the machine in some

topologies, the massive iron rotor is replaced by non-

magnetic low-weight structure. Eliminating iron teeth of

the machine increases the magnetic reluctance. Therefore,

in order to magnetize the machine to the required value, a

large amount of magnetomotive force (MMF) is required.

The conventional copper field winding cannot provide

this MMF due to losses and volume restrictions. There-

fore, high temperature superconducting (HTS) tapes can

be used in air-cored machines, which are capable to

conduct about 100 times the electrical current of copper

wire of the same dimensions without significant losses

[2].

The most common structure of superconducting syn-

chronous machine (SSM) is the radial-flux rotating field

type machine using the superconducting field winding

while the armature winding consists of copper coils fixed

by non-magnetic high strength materials such as G10.

The field winding can be placed on either magnetic or

non-magnetic support structure. Non-magnetic core rotor

declines weight and volume but increases the cost of the

machine due to higher required length of the supercon-

ducting tapes [3, 4].

The critical current of the superconducting tapes de-

creases significantly in the presence of an external mag-

netic field especially by the perpendicular components to

the broader face of the tape. In addition, variable mag-

netic field causes vortex losses in superconductors and

can change the state of the superconductor to normal.

Therefore, a damper screen is placed between armature

and field windings in order to protect the HTS field wind-

ing against the transient magnetic flux, which increases

the air-gap length [5].

The linear current density of the armature winding is

restricted by thermal and mechanical considerations of the

stator. Furthermore, synchronous reactance of machine
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limits linear current density of the machine. In the air-

cored synchronous machine, because of large air-gap, the

synchronous reactance of machine is very low, e.g. 0.2

per-unit. Therefore, superconducting machines exhibit

better stability compared to the conventional synchronous

machines [6]. Due to large air gap of superconducting

synchronous machines, the design and magnetic calcula-

tions of this kind of machine is quite different from the

conventional machines [3].

In the earlier works, the magnetic flux density of a

superconducting machine is calculated in two-dimensional

plane using a simple model of air-cored machine [7, 8]. In

this model the machine consists of stationary armature

windings in a smooth bore of stator iron yoke and rotating

excitation field winding located on non-magnetic rotor.

Basic equations for the simple model of the machine are

calculated which determine the distribution of magnetic

flux density inside the synchronous air-cored machine. In

[9], a new model for superconducting machine is sug-

gested which is capable of representing different types of

rotor core. The suggested model of the machine uses a

hollow shape core rotor which is depicted in Fig. 1. 

In this paper the limitation of conventional synchronous

machine are investigated and fundamental equations for

design of different types of synchronous superconducting

machines are presented. Moreover, the suggested analy-

tical modeling can be used in order to compare different

structures of the machine and optimal design process of

the machine with respect to the machine parameters such

as weight, volume, etc. The results of the analytical

modeling are compared to the results of the finite element

modeling which show good agreement.

2. Limitations of Classic Synchronous 
Machine

In the conventional machines, stator iron-teeth guide

the flux toward the back iron and support the armature

copper windings. The saturation of the stator iron-teeth

limits the radial flux density as follows [1]:

(1)

where λp is the fraction of stator that is dedicated to the

stator windings. Bs and Br are saturation level of the

magnetic iron and maximum radial flux density of the

machine, respectively. The typical scheme of stator mag-

netic teeth is illustrated in Fig. 2.

The armature windings are placed in the slots between

iron-teeth. In order to see the limitation of linear current

density of machine, the active power of machine should

be investigated. The basic model of synchronous machine

is well-known and consists of a voltage source and a

synchronous reactance. In order to investigate the active

power of the machine, a synchronous machine which is

connected to infinite bus-bar can be considered. The per-

unit active power of machine connected to infinite bus-

bar can be written as follows [1]:

(2)

where v, ef, xd and δ are infinite bus-bar per-unit volt-

age, per-unit internal voltage, per-unit synchronous reac-

tance, and power angle, respectively. Due to transient

stability considerations, the power angle is limited to a

value between 15 and 25 degrees. In order to increase

output power with the limited power angle, the synchron-

ous reactance should be decreased. The synchronous reac-

tance can be written as [1]:

Br = 1 λp–( )Bs

p = 
vef

xd
------ sinδ

Fig. 1. Schematic of General Machine Model. Fig. 2. Typical iron teeth in conventional machines.
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(3)

where ra is the armature radius, ks is the armature

winding factor, g is the air gap length, hS is the slot depth

and Ja is the current density in each slot. In order to

decrease the synchronous reactance, the air-gap length

should be increased. It should be noticed that decreasing

the parameter hS Ja, which is proportional to the linear

current density of machine, does not result in higher power

density because the internal voltage of machine is propor-

tional to this parameter too. The larger air gap can be

provided by either deacreasing the rotor radius or replac-

ing the iron-theeth with non-magnetic materials. Remov-

ing the iron-teeth has many advantages such as increasing

maximum radial magnetic flux and more filling factor of

stator winding because saturation of iron-teeth does not

restrict width of the slots. Moreover, the required insulator

in the slots are decreased because the non-magnetic teeth

are made from high strength non-conductive materials.

Therefore, the filling factor of armature winding can be

increased. The larger air-gap needs more turn-amper in

the field winding. Therefore, the copper field winding in

the air-cored machine decreases the efficiency, while using

superconducting tapes can conduct electrical current with-

out significant losses. Consequently, high power air-cored

machines should utilize superconductors as the field wind-

ing. Therefore, using air-cored superconducting machine

has many advantages such as increased efficiency, power

system stability, better operation performance and reduced

volume and weight in comparison with conventional

machines.

3. Analysis of Magnetic Flux Density in 
Air-cored Machines

For conventional machines, magnetic circuit theory is

able to calculate the machine magnetic parameters with

good precision but for a large air-gap machine, the mag-

netic circuit is not well definable. Consequently, the

magnetic calculation of machine is quite different and

makes the design of the superconducting synchronous

machines more challenging. Calculation of magnetic flux

density distribution in the machine is the fundamental

step in electromagnetic design of machine.

In order to calculate the distribution of flux density of

different regions inside the machine, a suggested two-

dimensional model is considered. The proposed structure

and the radii of important regions are depicted in Fig. 1.

The field winding is represented by a sinusoidal current

sheet in the mean radius of the field winding, rf. It is

assumed that the sinusoidal current sheet is placed bet-

ween the hollow shape rotor with inner and outer radiuses

rRi of rRo, and stator iron yoke (magnetic shield) with

inner and outer radius of rSi and rSo, respectively. In such

a way, solving Laplace’s equation for magnetic vector

potential in cylindrical coordination, the radial and the

tangential components of magnetic flux density in desired

radius r resulting from a current sheet at the radius of rf,

have been calculated.

In practice, the field winding is a concentrated winding

with a considerable thickness. In [8] it is suggested that

desired periodic winding can be represented by Fourier

series of sinusoidal current sheets as follows:

(4)

Then the thickness of the field winding has been taken

into account by assuming the winding to be made up

from a number of thin current sheets each of thickness of

drf, when the linear current density of each sheet is as

follows:

(5)

Integration with respect to the thickness of the field

winding after substituting dAn for An in the radial and

tangential magnetic flux density equations, results in the

magnetic flux density in desired radius r. Assuming non-

magnetic core rotor, the results of magnetic flux density

are presented in [8].

Considering desired linear periodic current sheet, the

radial and tangential magnetic flux density for nth harmonic

inside and outside the field winding region in cylindrical

coordination (r, θ) are calculated as follows:

(6)

(7)

where μ0, A, and σ are permeability in free space,

current sheet density of sinusoidal field winding and

influence of iron in the structure of machine, respectively.

Using new boundary conditions, the σ parameter in (3)

and (4), are calculated as follows:

(8)

xd = 2
μ0raks
pg

---------------
λp

1 λp–
--------------×

hS Ja
Bs

-----------×

Af =  
n 1=

∞

∑ Âfnsin npθ( )

dAn = Jfn drf×

r < rf : 
Brn

Bθn ⎭
⎬
⎫
 = 

μ0An

2
-----------σri,θi

rf

r
---⎝ ⎠
⎛ ⎞

np+1 cos npθ( )

sin– npθ( )⎩
⎨
⎧

r > rf : 
Brn

Bθn ⎭
⎬
⎫
 = 

μ0An

2
-----------σri,θi

rf

r
---⎝ ⎠
⎛ ⎞

np+1 cos npθ( )

sin– npθ( )⎩
⎨
⎧

σri ,θi = 

1 ηSλS

rf
rSi
------⎝ ⎠
⎛ ⎞

2np

+⎝ ⎠
⎛ ⎞ 1±ηRλR

rf
rSi
------⎝ ⎠
⎛ ⎞

2np

⎝ ⎠
⎛ ⎞

1 ηSλSηRλR

rf

rSi
------⎝ ⎠
⎛ ⎞

2np

–

----------------------------------------------------------------------------------------
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(9)

Considering μS and μR as stator and rotor relative

permeability respectively, μS, μR, λS and λR are defined as:

(10)

(11)

It should be mentioned that in this paper upper and

lower signs are considered to be associated to the radial

and the tangential components of magnetic field respec-

tively.

In order to consider both non-sinusoidal distribution

and the thickness of the field winding, following integ-

ration with respect of the field current sheet thickness

should be calculated.

(12)

There are five important regions in the simplified model

of the machine as follows:

1) Region I: The magnetic or non-magnetic core rotor.

2) Region II: The region between rotor core and field

winding.

3) Region III: The region between inner and outer radii

of field winding.

4) Region IV: The region between field winding and

magnetic stator.

5) Region V: The stator iron core.

For the desired point inside regions I and II, (3) should

be substituted in (9), but in regions IV and V, (4) should

be substituted in (9).Whenever the desired point is located

in region III, the magnetic flux density can be calculated

using superposition law. Therefore, magnetic flux density

in this region can be written as follows:

(13)

where  in the first and second term should be sub-

stituted from (4) and (3) respectively. Solving these integ-

rations yields the magnetic flux density distribution in

desired point but np = 2 results in an indeterminate form,

where n is the harmonic order and p is the pole pair

numbers. The results for np = 2 can be converted to a

determinate form using L'Hopital’s rule. The maximum

values of the calculated radial and tangential magnetic

flux densities of different harmonics are presented in

Table 1.

σro ,θo = 

1 ηSλS

rf
rSi
------⎝ ⎠
⎛ ⎞

2np

+⎝ ⎠
⎛ ⎞ 1 +ηRλR

rf
rSi
------⎝ ⎠
⎛ ⎞

2np

⎝ ⎠
⎛ ⎞

1 ηSλSηRλR

rf

rSi
------⎝ ⎠
⎛ ⎞

2np

–

------------------------------------------------------------------------------------------

λS = 
μS 1–

μS 1+
--------------,  ηS = 

1
rSi
rSo
-------⎝ ⎠
⎛ ⎞

2np

–

1 λS

2 rSi
rSo
-------⎝ ⎠
⎛ ⎞

2np

–

---------------------------------

λR = 
μR 1–

μR 1+
---------------,  ηR = 

1
rRi
rSo
-------⎝ ⎠
⎛ ⎞

2np

–

1 λR

2 rRi
rSo
-------⎝ ⎠
⎛ ⎞

2np

–

----------------------------------

Brn,θn =  

rfi

rfo

∫ dBrn,θndrf

Brn ,θn =  

rfi

r

∫ dBrn,θndrf +  

r

rfo

∫ dBrn,θndrf

Brn ,θn

Table 1. Radial and tangential magnetic flux densities in different regions.

Region Magnetic Flux Density (np ≠ 2)

Reg. I  

Reg. II  

Reg. III  

Reg. IV  

Reg. V  

*The upper and lower signs belong to the radial and tangential component of magnetic field

rri r rro< < B̂in,n = 
± μ0Ĵfn

2 1 β–( )
--------------------r

r

rfo
-------⎝ ⎠
⎛ ⎞

np−2

1+ηRλR( )
1 ηR

rRi

r
-----⎝ ⎠
⎛ ⎞

2np

–

1 ηR

rRi

rro
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⎛ ⎞

2np

–

---------------------------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

K ηS+ λS

rfo

rsi
------⎝ ⎠
⎛ ⎞

2np

H⎝ ⎠
⎛ ⎞

rro r rf i< < B̂in ,n = 
±μ0Ĵfn

2 1 β–( )
--------------------r

r

rfo
-------⎝ ⎠
⎛ ⎞

np−2

1±ηRλR

rRo

r
------⎝ ⎠
⎛ ⎞

2np

⎝ ⎠
⎛ ⎞ K ηS+ λS

rfo

rsi
------⎝ ⎠
⎛ ⎞

2np

H⎝ ⎠
⎛ ⎞

rf i r rfo< < B̂f,n = B̂out ,n rfo=r
 + B̂in,n rfi=r

rfo r rsi< < B̂out,n = 
rfo

r
-----⎝ ⎠
⎛ ⎞

np+2

1±ηSλS

r

rsi
-----⎝ ⎠
⎛ ⎞

2np

⎝ ⎠
⎛ ⎞ ηRλR

rRo

rfo
------⎝ ⎠
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2np

K H+⎝ ⎠
⎛ ⎞
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μ0Ĵfn

2 1 β–( )
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rfo

r
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⎛ ⎞

np+2

1+ηSλS( )
1 ηS

r
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⎛ ⎞
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⎜ ⎟
⎛ ⎞

ηRλR

rRo
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K H+⎝ ⎠
⎛ ⎞

β = ηSλSηRλR

rBo

rSi
------⎝ ⎠
⎛ ⎞

2np

χ = 
μ0Ĵfn

2 1 β–( )
--------------------r K = 

1
rfi

rfo
-------⎝ ⎠
⎛ ⎞

2−np

–

2 np–
----------------------------- H = 

1
rfi

rfo
-------⎝ ⎠
⎛ ⎞

2+np

–

2 + np
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In order to investigate the analytical results, the mag-

netic flux density of field winding is compared with

Finite Element Model (FEM) of a simple synchronous

superconducting machine. Therefore, a typical low speed

300 kVA machine with constant permeability for ferro-

magnetic components is considered. The parameters of

the typical machine are given in Table 2. For simplicity of

calculation, it is assumed that the field winding is placed

in curvy quadrilateral, which is bounded by two arcs of

concentric circles and two radii of the circles. The simpli-

fied model and field winding parameters are shown in

Fig. 3. The abovementioned filed winding can simply be

represented by Fourier series as follows:

(14)

Using equations of Table 1 and (14), the analytical

calculations for the typical machine have been performed

up to the 13th harmonic. As can be seen in Fig. 4, the

analytical results and the FEM results are in close agree-

ment. For instance the comparison of analytical and FEM

result in Region II for both radial and tangential compo-

nent of magnetic flux is depicted in Fig. 4. The source of

the error between the analytical results and the FEM

results is limited number of harmonics that counted in

calculations and the precision of FEM, which depends on

parameters such as mesh quality.

4. Inductances of Machine

In the conventional machine, the inductances of machine

can be adjusted by the air-gap value but in an efficient air-

cored machine design algorithm, the number of turns of

armature and field windings should be selected properly

to achieve desired value of inductances. Therefore accurate

calculation of machine inductances leads to better design

and optimization process.

Calculations of machine inductances are based on

magnetic energy stored in the coils. The stored energy in

Jn = 
4J

nπ
------ cos npδi( ) cos npδo( )–( )

Table 2. Units for magnetic properties.

Symbol Quantity Value (unit)

S apparent power of machine 300 kVA

nsync synchronous speed 250 rpm

p pole-pair numbers 3

rRi inner radius of rotor 160 mm

rRo outer radius of rotor 245 mm

rfi inner radius of field winding 250 mm

rfo outer radius of field winding 270 mm

rai inner radius of armature winding 300 mm

rao outer radius of armature winding 340 mm

rSi inner radius of magnetic shield 345 mm

rSo outer radius of magnetic shield 430 mm

jf current density of field winding 170 A/mm2

δi inner angle of field winding 20 degrees

δo outer angle of field winding 28 degrees

μ relative permeability of rotor and stator core 1000

Fig. 3. The simplified model of machine with iron rotor.

Fig. 4. (Color online) Comparison of analytical and FEM result in Region II.
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a coil can be written as follows [10]:

(15)

On the other hand, the magnetic energy can be derived

by integrating the product of magnetic vector potential

and the current density over all space as follows [11]:

(16)

It should be noticed that only one winding is energized

and the others should be considered non-excited. There-

fore, the integration volume is restricted to coil volume

and the self-inductance on each winding can be calculated

using following equation:

(17)

where V' is the volume of coil windings. The same

method is used for calculating the mutual inductance as

follows:

(18)

(19)

Using abovementioned method, the self and mutual

inductances are derived. Defining the armature radius

ratio and (x = rfi/rfo) the field radius ratio (y = rai/rao), the

self-inductance of armature winding and field winding

can be written as:

(20)

(21)

where

The mutual inductance between armature and field

windings can be written as:

(22)

where

The self and mutual inductances are calculated using

abovementioned equations. Besides the self and mutual

inductances calculations, they are estimated by finite

element method. The analytical and FEM results are com-

pared in Table 3. As can be seen in this table the analy-

tical and FEM results are in good agreement.

As mentioned before, the superconductor winding is

surrounded by a cylinder shield (damper) made of a con-

ductive material such as copper or aluminum in order to

minimize AC harmonic field experienced by the field

winding. The inductance of shield can be calculated using

Wm = 
1

2
---LI

2

Wm = 
1

2
---  ∫ ψ. J dv′

L =  ∫ V ′ψ. J dv′

I
2

-------------------------------------

Wm ,12 = M12I1I2

Wm ,12 =  
V′

∫ ψ1. J2 dv′

La =  
n=1

n odd

h

∑
8μ0la kakwaNa( )2

nπp 1 x
2

–( )
---------------------------------------Ln x,rao( )

Lf =  
n=1

n odd

h

∑
8μ0lf kfNa( )2

nπp 1 y
2

–( )
------------------------------Ln y rfo( )

Ln ϑ, r( ) = 
P1 P2 P3 P4+ + +

1 β–( )
------------------------------------------

P1 = 
β y

2
+( )

2 2 np–( )
----------------------- + 

1 βϑ
2

+( )
2 2 np+( )
-----------------------

P2 = −
2ϑ

2+np

4 n
2
p
2

–( )
------------------------ − 2βϑ

2−np

4 n
2
p
2

–( )
------------------------

P3 = 
1 ϑ

2+np
–( )

2

2 np+( )2
----------------------------ηsλs

r

rsi
------⎝ ⎠
⎛ ⎞ 2np

P4 = 
1 ϑ

2−np
–( )

2

2 np–( )2
----------------------------ηrλr

rRo
r
------⎝ ⎠
⎛ ⎞

2np

Maf =  
n=1

n odd

h

∑
8μ0lkakwaNakfNf

rfo
rao
------⎝ ⎠
⎛ ⎞

np

nπp 1 x
2

–( ) 1 y
2

–( )
---------------------------------------------------------Mn x,y( )

Mn x,y( ) = 
T1T2

1 β–( )
-----------------

T1 = 
1 y

2+np
–

4 n
2
p
2

–( )
------------------------ + 

1 y
2−np

–( )

2 np–( )2
-------------------------ηRλR

rRo
rfo
------⎝ ⎠
⎛ ⎞

2np

T2 = 
1 x

2−np
–

4 n
2
p
2

–( )
------------------------ + 

1 x
2+np

–( )

2 np+( )2
-------------------------ηSλS

rao
rsi
------⎝ ⎠
⎛ ⎞

2np

Table 3. Inductances of machine

Symbol Quantity Analytical FEM

Lf Self-inductance of field windings 20.6232 20.6254

La Self-inductance of “phase a” of armature winding 0.4831 0.4833

Mab Mutual inductance between “phase a” and “phase b” 0.1849 0.1849

Maf Mutual inductance between “phase a” and field winding 2.1701 2.2584

Mbf Mutual inductance between “phase b” and field winding 1.1508 1.0631

All conductors are consider to be in series
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same equation as (21) or (22), assuming the shield is a

single turn coil, which cover whole of pole area. In the

same manner, the mutual inductances between field and

shield (Msf) and between armature and shield (Msa) can be

calculated.

5. Parameter Calculation

Superconducting machines can be characterized using

(d-q) axis representation similar to conventional machines.

Therefore, different parameters of machine such as transi-

ent and sub-transient reactances and time constants of

both d-axis and q-axis should be calculated. For a Nph

phase machine, the d-axis and q-axis synchronous reac-

tance can be written as follows [12]:

(23)

Transient reactance of d-axis is given by:

(24)

The d-axis and q-axis subtransient reactances of machine

can be obtained, respectively as follows:

(25)

(26)

The armature time constant can be expressed as follows:

(27)

where ra is resistance of armature winding. The transi-

ent open-circuit and short-circuit time constants of d-axis

are given by:

(28)

(29)

where rf is resistance of field winding. As can be seen

in (28) and (29), the transient time constants of d-axis are

a function of field resistance. According to E-J law equa-

tions, the resistance of superconducting field is negligible

in comparison with internal resistance of field excitation

system including leads and brushes. Therefore, the re-

sistance of field winding can be estimated by resistance of

field excitation system. The subtransient open-circuit and

short-circuit time constants of d-axis are as follows:

(30)

(31)

where rs is resistance of shield. The subtransient open-

circuit and short-circuit time constants of q-axis can be

obtained from:

(32)

(33)

6. Conclusion

General equations of radial flux large air-gap machines

were derived which can be used to design different struc-

tures of superconducting synchronous machines. Using

the developed model and relations, the magnetic flux of

field winding in different regions of the machine was

calculated. Moreover, the self and mutual inductances

between machine windings are calculated. The compari-

son of the derived equations and the FEM results of the

typical superconducting machine based on suggested

model are in good agreement. The equations can also be

used to compare different structure of superconducting

machines. In addition, the developed equations can be

used in the design and optimization of the machines.

References

[1] J. Kirtley and F. Edeskuty, Proceedings of the IEEE 77,

(1989) pp. 1143-1154. 

[2] J. Bumby, Superconducting Rotating Electrical Machines.

Clarendon Press, Oxford (1983).

[3] S. Minnich, T. Keim, M. Chari, B. B. Gamble, M. J. Jef-

feries, D. Jones, E. T. Laskaris, and P. A. IEEE Trans.

Magn. 15, 703 (1979). 

[4] Kalsi, Applications of High Temperature Superconduc-

tors to Electric Power Equipment, Wiley-IEEE (2011).

[5] H. M. Kim, Y. S. Yoon, Y. K. Kwon, Y. C. Kim, S. H.

Lee, J. P. Hong, J. B. Song, and H. G. Lee, IEEE Trans.

Appl. Supercond. 19, 1683 (2011).

[6] Y. Mitani, K. Tsuji, and Y. Murakami, IEEE Trans.

Magn. 27, 2349 (1991).

[7] J. L. Kirtley, Proceedings of the IEEE 81 (1993) pp. 449-

461.

Xd = Xq = 
Nph

2
--------ωLa

Xd′ = 
Nph

2
-------- Xa

Xaf

2

Xf

-------–⎝ ⎠
⎛ ⎞

Xd″ = 
Nph

2
-------- Xa

XsXaf

2
2XafXasXfs XfXas

2
+–

XsXf Xfs

2
–

----------------------------------------------------------------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

Xq″ = 
Nph

2
-------- Xa

Xas

2

Xs

-------–⎝ ⎠
⎛ ⎞

τa = 
1

ωra
--------

2

1/Xd″( ) 1/Xq″( )+
--------------------------------------------⎝ ⎠
⎛ ⎞

τdo′ = 
Xf

ωrf
--------

τd′ = 
1

ωrf
-------- Xf

Xaf

2

Xa

-------–⎝ ⎠
⎛ ⎞

τdo″ = 
1

ωrs
-------- Xs

Xxf

2

Xf

------–⎝ ⎠
⎛ ⎞

τd″ = 
1

ωrs
-------- Xs

Xf Xas

2
2Xaf XasXfs XaXfs

2
+–

XaXf Xfa

2
–

------------------------------------------------------------------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

τqo″ = 
Xs

ωrs
--------

τq″ = 
1

ωrs
-------- Xs

Xas

2

Xa

--------–⎝ ⎠
⎛ ⎞



Journal of Magnetics, Vol. 18, No. 3, September 2013 − 267 −

[8] S. K. Safi and J. R. Bumby, IEE Proceddings C 139, Sep

1992.

[9] M. Yazdanian, P. Elhaninia, M. R. Zolghadri, and M.

Fardmanesh, IEEE Trans. Appl. Supercond. 23, 5200406

(2013).

[10] K. R. Davey and B. B. Gamble, IEEE Trans. Magn. 41,

2391 (2005).

[11] David K. Cheng, Field and Wave Electromagnetics, Add-

ison-Wesley, 2nd Ed., Cambridge, MA (1989).

[12] J. Pyrhoenen, T. Jokinen, and V. Hrabovcova, Design of

Rotating Electrical Machines, John Wiley & Sons (2008).


