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Most electrical machines like motor, generator and transformer are symmetric in terms of magnetic field

distribution and mechanical structure. In order to analyze these problems effectively, many coupling techniques

have been introduced. This paper deals with a coupling scheme for open boundary problem of symmetric and

periodic structure. It couples an analytical solution of Fourier series expansion with the standard finite element

method. The analytical solution is derived for the magnetic field in the outside of the boundary, and the finite

element method is for the magnetic field in the inside with source current and magnetic materials. The main

advantage of the proposed method is that it retains sparsity and symmetry of system matrix like the standard

FEM and it can also be easily applied to symmetric and periodic problems. Also, unknowns of finite elements at

the boundary are coupled with Fourier series coefficients. The boundary conditions are used to derive a

coupled system equation expressed in matrix form. The proposed algorithm is validated using a test model of a

bush bar for the power supply. And the each result is compared with analytical solution respectively.

Keywords : analytical solution, finite element method, Fourier series expansion, open boundary, symmetric and peri-
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1. Introduction

The finite element method is a well-known numerical

method to analyze the electromagnetic phenomena. Its

advantage is that it can be easily applied to electromag-

netic problems with complex geometry and nonlinear

material. However, it is not suitable to open boundary

problems since it requires finite element discretization

even for the infinite region. Also, it is not easy and

uncertain to determine the outer boundary of field region

for accurate solution. To solve this problem, several methods

have been proposed such as boundary element method,

infinite element method, hybrid harmonic FEM, ballooning,

and others [1-8].

In this paper, the interior region with the source and the

material is represented by the FEM and the exterior re-

gion is represented using an analytical form of the Fourier

series multiplied by radius power, which is a general solu-

tion of Laplace equation. The two expressions are coupled

on the boundary using continuity condition of magnetic

field [9]. Especially, in this paper the numerical techni-

ques for the problem with symmetry or periodicity in

structure and source distributions are presented. Many

applications don’t have to be analyzed for whole region

such as electric rotary machine and electrically balanced

structure apparatus. When the Fourier series is expanded,

the FEM and analytical solutions are coupled considering

the characteristics of odd and even function of magnetic

potential. 

The proposed method retains the sparsity and symmetric

of system matrix like the standard FEM. This paper sug-

gests an application method of infinite boundary conditions

when it has symmetric structure in Neumann or Dirichlet

conditions. So, as an analysis region is rotated, the wave-

form of solutions is symmetric in whole region. There-

fore, only a part of model with symmetry structure is

analyzed. This method increases the space efficiency of

analysis region. And it can describe the inner region of

boundary more accurately. In addition, computer memory

and solving time can be saved by analyzing a half or a

quarter of whole region. To validate usefulness of the pro-

posed algorithm, we apply the method to a problem with

an exact solution, and then compared its numerical result

with the exact one.
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2. Numerical Algorithm

Fig. 1 shows the model to be analyzed by coupling

analytical solution and FEM for open boundary problem.

On the open boundary Γ, just outside the complex body
(FE Region), the two kinds of solutions will be coupled.

Using the numerical procedure for finite element analy-

sis, the governing equation is represented into the matrix

form [8],

(1)

A1: Potentials of nodes in inner region

A2: Potentials of nodes on open boundary Γ

where, A is the magnetic vector potentials of nodes, s the

system matrix and F the forcing vector. The subscripts 1

and 2 stand for the inner region and the boundary, respec-

tively. Also, B, the second term of left side in (1), is

derived from boundary integral term and expressed as

(2)

j : Boundary node number ( j = 1, 2, ..., nb)

where, nb is the total number of nodes on boundary Γ, Nj

the shape function related to node j,  the

tangential component of magnetic field intensity and ν

magnetic reluctivity. As the potential function A on Γ is
expanded by Fourier series [10], the coefficients are as

follows

(3)

. (4)

The coefficients Cn and Sn expanded by Fourier series are

components of A3

(5)

nh: the number of harmonics

From (3) and (4), A3 can be written as follows

(6)

(7)

(8)

(9)

where, i is the number from 1 to 2nh, j from 1 to nb and n

the integer of (i+1)/2. 

Using the magnetic field intensity and coefficients of

Fourier series, the boundary integral term is expressed as

(10)

And again, boundary integral can be expressed by A3

B = KA3  (11)

(12)

Thus, from (1), (6) and (11), we can obtain the final

system matrix equation.

(13)

where I is the unit matrix.

By multiplying  to third equation, we can

make the system matrix retain the symmetry and the

sparsity like standard FEM.

3. Application Technique of Boundary 
Conditions

Fig. 2 represents a part of full region when the geo-

metry and current distributions are symmetric and perio-

dic. One is a half model with symmetry between left and

right side with Dirichlet condition, the other a quarter

with Dirichlet and Neumann conditions
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Fig. 1. Schematic diagram of open boundary problem.
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Fig. 3 shows the distributions of the magnetic vector

potential along the circumference at ρ = a. In half model,

if numbers of nodes were ordered like the arrowed curve

in Fig. 4, the system matrices of each region are equal.

The superscripts 1 and 2 stand for the region Ω1 and Ω2,

respectively. 

Since the current distributions of each region are sym-

metric but have different sign, the forcing vectors satisfy

following relationship

(14)

And, the flux distributions are also symmetric and this

means that the magnetic vector potentials of boundary

nodes are

A0 = 0 (Dirichlet boundary condition). (15)

From the above, the relationships between potential sets

for each region are

(16)

In case of half model, consequently, the system matrix

(13) can be reduced as follows.

(17)

The potential function along the open boundary has sine

waveform like symmetry in θ, and has a form of

. (18)

Therefore, the coefficients of Fourier series are calculated

as follows

(19)

(20)

The coefficients of cosine terms are zero, so the  is

just defined the components of Sn.

(21)

From (19) and (20),  can be written as follows

(22)

F1

1
 = −F1

2

A1

1
 = −A1

2
, A2

1
 = −A2

2

S11

1
S12

1
0

S21

1
S22

1
K

1

0 T
1

I

A1

1

A2

1

A3

1⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

 = 

F1

1

F2

1

0⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

A θ( ) = −A 2π θ–( )

Cn = 0

Sn = 
2

π
---  

0

π

∫  A a, θ( )sin nθdθ

A3

1

A3

1
 = S1, S2,..., Snh

{ }

A3

1

A3

1
 = T

1
A2

1

Fig. 2. Boundary conditions of symmetrical and periodic

structure.

Fig. 3. (Color online) Potential distributions of symmetrical and periodic structure. 

Fig. 4. Node ordering of symmetrical structure (half model).
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(23)

(24)

(25)

(26)

(27)

where, i is a number from 1 to nh, j from 1 to nb and n is

equal to i. Using (24)-(26), boundary integral term is

expressed as

. (28)

And again, Eq. (28) can be expressed with .

(29)

n = j (30)

Now, with the above (23) and (30), the system equation

for a half model, (17), is completed. Also, in case of a

quarter model, the system matrix is reduced as (17). And

then the expressions of T1, K1 and  are similar to those

of in half model. 

The potential pattern has the half-wave symmetry as

shown in Fig. 5 and following equations are satisfied.

(31)

So, the coefficients of Fourier series are as follows

(32)

(33)

Therefore, T1, K1 and  of a quarter model are express-

ed as

(34)

(35)

(36)

By applying (34), (35) and (36) to system matrix of Ω1, a

quarter model is also expressed.

4. Numerical Results

To validate the algorithm, a model that has an analytical

solution is adopted as in Fig. 6, which is a bus bar for the

power supply to the super conductive magnet. The mag-

netic field is calculated by the coupling method for full,

half and quarter region. In Fig. 6, the width of conductor

is w = 0.1261 (m), the height h = 0.2606 (m), the distance

between centers of conductors c = 0.5437 (m) and current

densities of each bars is 5 (A/mm2).

Fig. 7 represents the flux distribution of full model

simulated by coupling scheme. And, the flux distribution

patterns of a half and a quarter model are shown in Fig. 8.

The both results are reasonable.

The magnetic vector potentials and the errors along the

test path are shown in Fig. 9. The radius and the angle of

the test path are r = 0.3 (m) and from θ = 0o to θ = 90o,

Tij

1
 = 

2

πn
------Vnj

1

Vn1

1
 = 

1

n
---
sin nθ1 sin nθ2–

Δθ1

----------------------------------------−cosθ1

Vnnb

1
 = 

1

n
---
sin nθnb

sin nθnb 1––

Δθj 1–

-----------------------------------------------+cosθnb

Vnj

1
 = 

1

n
---

sin nθj sin nθj 1––

Δθj 1–

------------------------------------------- −
sin nθj 1+ sin nθj–

Δθj

---------------------------------------------

0 = θ1 < θ2 < …< θnb
 = π

Bj

1
 = − 1

μ0

-----  
j=1

nh

∑Vnj

1
Sn

A3

1

B
1
 = K

1
A3

1

Kij

1
 = − 1

μ0

-----Vni

1

A3

1

A θ( ) = A π θ–( ) = −A π θ+( ) = −A 2π θ–( )

Cn = 0

Sn = 

4

π
---  

0

π/2

∫  A a, θ( )sin nθdθ ,   n = odd

0 ,   n = even⎩
⎪
⎨
⎪
⎧

A3

1

Tij

1
 = 

4

πn
------Vnj

1
,  n = 2i 1–

Kij

1
 = 

1

μ0

-----– Vni

1
,  n = 2i 1–

A3

1
 = S1, S2, S5,..., Snh

{ }

Fig. 5. Node ordering of periodic structure (quarter model). Fig. 6. Example model (Bus bar).
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respectively. The error is defined as the percent difference

between analytical solution and the result of a quarter

model. All the potential curves look like coincide and the

maximum error is 0.3 (%).

5. Conclusion

In electromagnetic field analysis, this paper suggests

application methods of open boundary conditions when

the problem of interest has symmetry and periodic in

structure and in source. The outer (far) region of open

boundary is calculated by analytical method and inner

(near) region include current and magnetic material is

analyzed by FEM. In this case, the solution sets are sym-

metric or periodic through the whole region. Therefore,

analysis of only a part of model with symmetric structure

is enough. Thus the proposed method can reduce the

effort to enter the input data, necessary computer memory

and computation time greatly. Proposed algorithm also

can apply to the others as same approach if the models

are 6th, 8th and 10th periodic problem. To prove the

usefulness of algorithm, the example having analytical

solution is adopted. The results are compared with those

of each models i.e. a full, a half and a quarter model.
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Fig. 7. (Color online) Flux distribution (full model).

Fig. 8. (Color online) Flux distribution (half and quarter model).

Fig. 9. (Color online) Potential comparison along the test path.


