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This paper proposes a sampling-based optimization method for electromagnetic design problems, where design

sensitivities are obtained from the elaborate surrogate models based on the universal Kriging method and a

local window concept. After inserting additional sequential samples to satisfy the certain convergence criterion,

the elaborate surrogate model for each true performance function is generated within a relatively small area,

called a hyper-cubic local window, with the center of a nominal design. From Jacobian matrices of the local

models, the accurate design sensitivity values at the design point of interest are extracted, and so they make it

possible to use deterministic search algorithms for fast search of an optimum in design space. The proposed

method is applied to a mathematical problem and a loudspeaker design with constraint functions and is com-

pared with the sensitivity-based optimization adopting the finite difference method.
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1. Introduction

Recently, some research in electromagnetics has focused

on the metamodeling for electromagnetic optimization

problems which usually require high computational cost.

Among all the metamodeling methods such as the least-

squares regression, support vector regression and radial

basis functions, the Kriging method has gained significant

attention due to its capability and accuracy of dealing

with highly nonlinear problems. Generally, the method

consists of two parts which realize a response function of

interest: the mean structure and a zero-mean stationary

Gaussian stochastic process [1-8]. 

Regarding the electromagnetic (EM) application, the

first attempt was made to optimize the TEAM workshop

problem 25 with the use of the Kriging-based surrogate

models [1]. Since then, several articles have been publish-

ed so far. For the same problem, J. D. Lavers et al. [2]

compared three sequential methods of least square, Krig-

ing and linear Bayesian, and K. R. Davey [3] introduced

the Latin hypercube sampling technique combined with

pattern search algorithm. K. Hameyer et al. [4] adopted

the Kriging models in conjunction with evolution strategy

to reduce the torque ripple of a switched reluctance

motor. In [5], the optimal design of a brushless DC motor

was conducted by the adaptive response surface method

with the reduced design space at candidate optimal points.

The reduced space is somewhat similar to the local

window concept but its main role lies in improving the

accuracy of the response surface generated on the entire

design space. Most research works used the Kriging

method to generate surrogate models in the entire design

space, so-called global window, and then obtained the

optimum through the models combined with stochastic

optimization methods, such as evolution strategy, genetic

algorithm, simulated annealing, etc., which need a lot of

design iterations than the sensitivity-based optimization

methods. When using the Kriging method with the stoch-

astic search algorithms, it is worth noticing that only the

chance of a global optimum is enhanced, not guaranteed.

Moreover, it is obvious that, as the number of design

variables increases, a computational burden still occurs

because lots of sampling points are required for the

surrogate modeling and optimization process especially

on the entire design space.

As an effort of enhancing the efficiency of the Kriging-

based optimization method, this paper proposes a new

sampling-based optimization method for EM designs where
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design sensitivities are extracted from the elaborate surro-

gate models based on the universal Kriging (UKG) method

and a local window concept. After inserting sequential

samples to satisfy a certain convergence criterion, the

elaborate surrogate model for each true performance func-

tion is generated within a relatively small design area,

called a hyper-cubic local window, at an intermediate

design point. From Jacobian matrices of the local surro-

gate models, the accurate design sensitivity values are

easily extracted, and so they make it possible to use deter-

ministic search algorithms for fast search of an optimum

in the design space. The proposed method is applied to a

mathematical problem and a loudspeaker design with

constraint functions and is compared with the sensitivity-

based optimization adopting the finite difference method

(FDM).

2. Kriging Model and Its Derivative

In this section, the basic theory of UKG including its

derivative is summarized briefly [6-8]. In the Kriging

method, the outcomes are considered as a realization of a

stochastic process. The goal is to estimate a response y =

[y(x1), y(x2),…, y(xn)]
T with y(xi)∈R1 based on n sample

points, x = [x1, x2,…, xn]
T with xi∈Rm. The response

consists of a summation of two parts as

y=Fβ+e

where F=[fk(xi)] i=1,…n, k=1, …K (1)

β=[β1, …, βk], e=[e(x1), …, e(xn)]
T.

The first term of the right side of (1), called the mean

structure of the response, is intended to follow the general

tendency of the function to be modeled. It is generally

composed of the first/second-order basis functions fk(xi)

and the vector of regression coefficient β, which is

obtained from the generalized least square method. The

second term e is a realization of the stochastic process. It

is assumed to have zero mean E[e(xi)]=0 and covariance

structure E[e(xi) e(xj)] = σ2R(θ, xi, xj), where σ2 is the

process variance, θ is the correlation parameter vector

estimated by applying the maximum likelihood estimator

(MLE) and R is the correlation function of the stochastic

process. The term e makes it possible to follow the fluctu-

ations around the general tendency. In most engineering

applications, the correlation function is set to be a

Gaussian form expressed as follows

 (2)

where xi,l is the lth component of variable xi.

Under the decomposition of (1) and the optimal θ to

maximize MLE, the noise-free unbiased response  at a

new point of interest denoted by x0 is written as a linear

predictor

 (3)

where w0==[w1(x0), w2(x0),…, wn(x0)]
T means the n × 1

weight vector for prediction at the point. It is obtained

using the unbiased condition  as

 (4)

where R is the symmetric correlation matrix with the ijth

component Ri,j=R(θ, xi, xj), r0=[ R(q, x1, x0),…, R(θ, xn,

x0)]
T is the correlation vector between x0 and samples x

and λ is the Lagrange multiplier. 

After substituting (4) into (3), the prediction of Kriging

model which interpolates the n sample points is expressed

as

 (5)

where σ2=1/n(y-Fb)R−1(y-Fβ) and β=(FTR−1F)−1(FTR−1y)

are obtained from the generalized least square regression.

From (5), the derivative  of the prediction model at x0
is given by

(x0)=  (6)

where  and  denote the Jacobian transformation of f0
and r0, respectively.

3. Implementation of Sampling-Based 
Design Optimization

To efficiently carry out the sampling-based optimization

method utilizing the design sensitivity information, three

strategies of the hyper-cubic local window, sampling and

sample reuse are explained, and accordingly the program

architecture for its numerical implementation is presented.

3.1. Hyper-cubic local window

Since the design sensitivity of (6) corresponds to a local

quantity at a design point of interest, the hyper-cubic local

window is much more suitable for obtaining an accurate

sensitivity value than the global window. Therefore the

surrogate model at each intermediate design point is

generated during optimization as shown in Fig. 1 where

g1 and g2 represent constraint functions to be realized

including an objective function. The window size, Ri, can

be decided as:
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i=1,2,…nd  (7)

where c is the coefficient which is usually between 2-5%,

di is the ith design variable in the nd-dimensional space

and the superscripts, U and L, are the upper and lower

bounds, respectively. 

3.2. Sampling 

After deciding the local window, evenly distributed Nr

initial samples are generated on the window based on the

Latin Centroidal Voronoi Tssellations (LCVT) [7, 8], and

then the surrogate model is produced. The minimum

number of the initial samples is given by

 (8)

where P is the highest order of the basis functions used in

the model. The accuracy of the surrogate model generated

with the initial samples is estimated by

for i=1~S, j=1~Nr

 (9)

where Var(y(xj)) is the variance of Nr true responses at the

samples, S is the total number of testing points generated

using LCVT, and  is the predicted mean square

error. If the accuracy of a surrogate model is not satis-

factory (h ≤ 1%), more samples are sequentially inserted

within the local window until the surrogate model sati-

sfies the target accuracy condition. 

3.3. Sample Reuse 

During the design iteration, the local window is always

scanned to check whether samples exist before generating

the initial samples. This case occurs when the current and

the previous local windows overlap each other partially.

In the case, existing samples belonging to both the win-

dows are included in the initial samples, and so the less

number of samples is generated in the current window.

Especially around the optimum point, the number of

inserted samples is much less than the number of existing

samples. That can result in significant save of the com-

putation time for executing the sampling-based design

optimization. 

3.4. Program Architecture 

Utilizing the sensitivity values (6) of a current design,

which are extracted from the locally accurate surrogate

models corresponding to the objective and constraint

functions, a next improved design is sought with the

sequential quadratic programming (SQP) algorithm. The

program flowchart of the proposed sampling-based design

optimization method using the sensitivity information is

shown in Fig. 2. The program consists of two parts: the

main program was realized with Matlab, and only the part

of computer simulations at samples marked with the

dotted box in Fig. 2 was executed externally. It means the

two parts are totally separated and the information on the

sampling points and their simulation results is communi-

cated with each other only when necessary. 

4. Design Examples

To prove the validity of the proposed method, two
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Fig. 1. (Color online) Illustration of hyper-cubic local window

and sensitivity-based searching technique.

Fig. 2. Flowchart of the proposed sampling-based optimization

method.
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numerical examples are tested: The first is a two-dimen-

sional (2-D) mathematical example, and the second is a

12-D loudspeaker design problem with respect to the

design space. The two problems were solved using two

different optimization methods: the first is a sensitivity-

based method adopting FDM and SQP searching algorithm

provided from Matlab; and the other is the proposed

sampling-based method with the first-order basis function

and the same SQP.

4.1. 2-D Mathematical problem

Let’s consider a 2-D deterministic optimization problem

of which the mathematical formulation is given as

min. f(d)=−(d1+d2−10)2/30−(d1−d2+10)2/120
subject to

g1(d)=1−d12d2/5  (10)

g2(d)=1−(d1+d2−5)2/30−(d1−d2−10)2/120
g3(d)=1−80/(d12+8d2+5).

The constraint functions and the initial design are

illustrated in Fig. 3 where contour lines belong to the

objective function and DDO denotes the deterministic

design optimum to be sought. Starting with 5 initial samples,

elaborate surrogate models were generated at each inter-

mediate design based on the UKG and the hyper-cubic

local window for the four true functions (i.e. one objec-

tive and three constraints), respectively. Total 99 new

samples were sequentially inserted until reaching the DDO

point. Fig. 3 includes the traces of intermediate designs

marked with asterisks, and the enlargement design space

is shown in Fig. 4 where samples are marked with empty

circles. As shown in Fig. 4, the sample reuse process is

mainly activated around the optimum, and accordingly

total 57 samples were reused for constructing surrogate

models during the whole optimization process. 

The performances between the two different optimi-

zation methods are compared with each other in Table 1.

Both the methods searched for the exact optimum after

same 12 design iterations but the proposed method

required more than two times the number of true function

simulations of the FDM-based method. The difference of

the simulation numbers comes from the different ways of

numerically calculating the sensitivity values. It means

while FDM uses the one-dimensional scheme, the pro-

posed method utilizes the multi-dimensional surface for

extracting the values. Hereby, it can be inferred that the

sampling-based sensitivity computation will be com-

parable to the FDM-based one as design variables

increase.

4.2. 12-D Loudspeaker design 

The loudspeaker design problem in [9-11] is selected to

show the applicability of the proposed method to EM

device designs. Fig. 2 shows the configuration of the

loudspeaker with 12 design variables. The objective func-

tion f is defined to minimize the loudspeaker mass M, and

the constraint function g is set to keep the average flux

density of the air gap being more than B0=1.8 T, as 

Fig. 3. (Color online) Shapes of objective/constraint functions

and traces of design points.

Fig. 4. (Color online) Sampling and design points around the

optimum.

Table 1. Performance indicators between two different methods

for a mathematical example.

Design

variables
dL

Initial

design

Optimum

(FDM-based)

Optimum

(sampling-based)
dU

d1

d2

0 3.5 2.44 2.44 10

0 5.0 0.84 0.84 10

f(d) − −0.677 −2.627 −2.627 −

Iterations − − 12 12 −

no. simulations − − 39 104 −
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minimize f(d)=M(d)

subject to g(d)=B0−B(d) ≥ 0  (11)

where d is the design variable vector, and mass density

values of 7,390 kg/m3 and 7,600 kg/m3 are used for the

mass calculation of permanent magnet and steel, respec-

tively. To take into account the nonlinear property of the

steel yoke, the estimation of the objective and constraint

functions requires executing an EM simulator. Here, a

commercial simulator, called MagNet VII based on the

finite element method [12], was used and was easily

incorporated with the proposed optimization method. 

For generating the surrogate models of the two perfor-

mance functions, the hyper-cubic local window started

with 25 initial samples, and 751 sequential samples were

used to accomplish the optimization. The comparison bet-

ween the two optimization methods is presented in Table

2 where the two optimum points are quite different with

each other. It implies that, due to relatively large number

of design variables, the problem itself has local minima

near the constraint boundary. It is also observed that the

total iteration number of the proposed method is small by

30% of that of the FDM-based one even though both

methods use the same SQP searching algorithm and initial

design. Moreover, the method yields the best objective

function value (i.e. the smallest mass of the loudspeaker)

among the three different designs while satisfying the

constraint condition. It is inferred that the proposed

sampling-based method produces more accurate sensitivity

values than the FDM-based method. In terms of the simu-

lation number, the proposed method still requires more

EM simulations by about 40% than the FDM-based one

but the relative difference ratio of the simulation number

of the 12-D design problem to the FDM-based one is

reduced remarkably by nearly 230% when compared with

the 2-D problem. In Fig. 6, the two optimized loudspeaker

designs are compared with each other, of which the mass

reduces by more than 2.4 kg to the initial one.

5. Conclusion

In this paper, the sampling-based optimization method,

where design sensitivities are obtained from the elaborate

surrogate models based on the hyper-cubic local window,

is proposed. The method has been successfully applied to

two design examples, and their results show the proposed

method is comparable to the FDM-based optimization

method in terms of accuracy and efficiency. The method

will be very useful for dealing with EM design problems

especially with high dimensional design variables. 

Fig. 5. (Color online) Two-dimensional axisymmetric config-

uration of a loudspeaker.

Table 2. Performance indicators between two different methods

for a loudspeaker design problem.

Design

variables
dL

Initial

design

Optimum

(FDM-based)

Optimum

(sampling-based)
dU

BH1 (mm)

BH2 (mm)

2.03 9.63 7.47 5.18 12.70

2.03 6.15 7.67 5.03 12.70

BW (mm) 3.81 12.12 12.70 11.96 12.7

HD (mm) 0 2.64 0.10 0.48 5.08

IH (mm) 1.02 4.80 1.93 1.60 7.62

IR (mm) 1.02 4.97 3.96 4.04 8.13

MBO (mm) 0.76 1.50 4.06 3.53 4.06

MH (mm) 3.05 15.75 12.88 9.58 17.78

MTO (mm) 0.76 2.97 3.18 0.79 5.08

TH (mm) 2.03 3.10 2.08 4.01 4.57

TW1 (mm) 4.83 22.12 11.02 13.90 22.86

TW2 (mm) 4.83 19.28 8.69 11.38 22.86

M(d) (kg)

B(d) (T)

−

−

3.57

1.73

1.16

1.80

1.02

1.80

−

−

Iterations − − 24 17 −

no. simulations − − 549 776 −

Fig. 6. (Color online) Comparison of two different optimized

loudspeaker designs.
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