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This paper presents an efficient methodology for accurate reliability assessment of electromagnetic devices. To

achieve the goal, elaborate surrogated models to approximate constraint functions of interest are generated

based on the dynamic Kriging method and a hypercube local window. Then, the Monte Carlo simulation

scheme is applied to the surrogate models. This leads to reducing computational cost dramatically without

degrading accuracy of the reliability analysis. The validity of the proposed method is tested and examined with

a mathematical example and a loudspeaker design. 
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1. Introduction

For last few decades, computer-aided simulation tools

such as finite element method, boundary element method,

finite difference method, etc. have been widely used in

the field of electromagnetic (EM) appliances because they

can lead to saving development cost and time for either

new or improved EM devices. However there is still a

consistent demand for more efficient numerical modeling

techniques when engineers often encounter time-consum-

ing design problems, such as deterministic or probabilistic

design optimization, which require a number of numerical

simulations [1]. Recently, as one of the promising techni-

ques which have a low computational cost with a good

accuracy of numerical solutions, the Kriging-based surro-

gate modeling has drawn EM engineers’ attention [2-5].

The Kriging method was first developed in geostatistics

and has been successfully applied to other engineering

such as mechanics, chemistry and so on [2-7]. Generally,

the method consists of two parts which approximate a

response function of interest: the mean structure and a

zero-mean stationary Gaussian stochastic process. The

ordinary Kriging method (OKG) assumes that the mean

structure is zero or constant, and the universal Kriging

method (UKG) constructs the mean structure using the

first/second-order polynomials. As to EM application, the

first attempt was made to optimize the TEAM workshop

problem 25 with the use of the Kriging models for objec-

tive function [2]. Since then, several articles have been

published so far. J.D. Lavers, et al. in [5] compared three

sequential methods of least square, Kriging and linear

Bayesian using a design problem. K. R. Davey in [3] intro-

duced the Latin hypercube sampling method combined

with pattern search algorithm. K. Hameyer, et al. in [4]

adopted the Kriging models in conjunction with an evolu-

tion strategy to reduce the torque ripple of a switched

reluctance motor. Most of previous research works used

OKG or UKG to generate surrogate models and obtained

deterministic optimum designs utilizing the models com-

bined with stochastic methods such as evolution strategy,

genetic algorithm, simulated annealing, etc. 

The motivation of this work comes from following two

questions on the previous research. The performance of

EM devices normally has a highly nonlinear and implicit

function with respect to design variables. On the other

hand, the probabilistic optimization problems generally

require much more expensive computational cost than the

deterministic ones. From these facts, the first question is

as follows: Is ORG or UKG most suitable for approximat-

ing such EM performance functions? The second is as: Is

there any adequate problem which shows a maximum

profit of the Kriging-based surrogate modeling? 
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As an effort to seek an answer to the above questions,

this paper presents an efficient methodology for reliability

assessment of EM devices which adopts Monte Carlo

simulation (MCS) combined with dynamic Kriging-based

surrogate models. To obtain an elaborate surrogate model,

the dynamic Kriging (DKG) method in conjunction with

a hypercube local window is introduced. In the terms of

the accuracy of DKG, it has already been proven by Choi,

et al. in [6, 7] where DKG generates more accurate surro-

gate models for highly nonlinear functions compared with

the existing Kriging methods. Meanwhile, for the prob-

abilistic optimization, MCS is an indispensable tool because

its result is considered as a reference when executing

approximated reliability analysis methods such as first/

second-order reliability analysis or dimension reduction

method. However, for reliable results of MCS, several

hundreds of thousands of numerical solutions are usually

needed. That causes a very significant computational burden

to engineers. To overcome this problem, the original MCS

scheme is successfully incorporated with the DKG models.

The method leads to reducing computational cost dramati-

cally without degrading accuracy of the reliability ana-

lysis. The validity of the proposed method is tested and

examined with a mathematical example and a loudspeaker

design.

2. Dynamic Kriging Method

When compared to the traditional Kriging methods such

as OKG and UKG, DKG yields more accurate surrogate

models whenusing the genetic algorithm (GA) for the

best basis function set and using the pattern search for

optimum correlation parameters [6, 7]. In this section, the

basic concepts of DKG are summarized briefly. 

2.1. Formulation

In the Kriging method, the outcomes are considered as

a realization of a stochastic process. The goal is to

estimate a response y = [y(x1), y(x2),…, y(xn)]
T with

y(xi)∈R1 based on n sample points, x = [x1, x2,…, xn]
T

with xi∈Rm. The response consists of a summation of two

parts as

 (1)

The first term of the right side of (1), called the mean

structure of the response, is intended to follow the general

tendency of the function to be modeled. It is generally

composed of user-defined basis functions fk(xi) and the

vector of regression coefficient β. The second term e is a

realization of the stochastic process. It is assumed to have

zero mean E[e(xi)] = 0 and covariance structure E[e(xi)

e(xj)] = σ2R(θ, xi, xj), where σ2 is the process variance, θ

is the correlation parameter vector estimated by applying

the maximum likelihood estimator (MLE) and R is the

correlation function of the stochastic process. The term e

makes it possible to follow the fluctuations around the

general tendency. In most engineering applications, the

correlation function is set to be a Gaussian form express-

ed as 

 (2)

where xi,l is the lth component of variable xi.

Under the decomposition of (1), and the optimal θ to

maximize MLE, the noise-free unbiased response  at a

new point of interest denoted by x0 is written as a linear

predictor

 (3)

where w0 = [w1(x0), w2(x0),…, wn(x0)]
T means the n × 1

weight vector for prediction at the point. It is obtained

using the unbiased condition  as

 (4)

where R is the symmetric correlation matrix with the ijth

component Ri,j = R(θ, xi, xj) and r0 = [R(θ, x1, x0), …,

R(θ, xn, x0)]
T is the correlation vector between x0 and

samples x and λ is the Lagrange multiplier. After sub-

stituting (4) into (3), the prediction of Kriging model

which interpolates the n sample points is expressed as 

 (5)

where σ2 = 1/n(y-Fβ)R−1(y-Fβ) and β = (FTR−1F)−1(FTR−1y)

are obtained from the generalized least square regression.

Under the assumption of the Gaussian process, the 1-α
lever prediction interval of the response is given by 

(6)

where Z1-α/2 is the 1-α quantile of the standard normal
distribution and . Therefore,

the bandwidth of the prediction interval at the point x0 is

 (7)

This prediction interval is used as an accuracy measure to

decide if the surrogate model is accurate or not.
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2.2. Best basis-function set using genetic algorithm

The basis function fk(xi) in (1) do not change during the

surrogate model generation process for the traditional

Kriging methods where the polynomial order are fixed in

advance of the model generation. However, it is obvious

that the fixed-order basis functions may not be suitable to

describe the nonlinearity of the mean structure for highly

nonlinear problems. In some cases, it is also pointed out

that the accuracy of the surrogate model may not improve

by using higher-order terms.

Contrast to the traditional methods, DKG adopting GA

selects the optimal basis function set at a prediction point

in order that the generated surrogate model has the best

accuracy. It means the best combination up to the highest-

order basis function prescribed is decided by GA which

screens all the foreseeable basis function sets under cer-

tain convergence criteria. With the highest-order P satisfy-

ing (8), (5) can be solved when the total number of basis

functions is less than sampling points n,

 (8)

where nd is the dimension of design variables engaged in

the surrogate model. After deciding P, GA is applied to

find the best basis function set efficiently. 

2.3. Optimum correlation parameter using pattern search

DKG also utilizes the pattern search algorithm to find

the optimal correlation parameter θ in (2) based on MLE.

The MLE maximization problem for θ is written by 

find θ

 (9)

where ζ(θ) is equivalent to the maximum likelihood
estimator. Since it is not a gradient-based optimization

method, the pattern search algorithm is powerful enough

to find the optimum which satisfies (9). 

3. Reliability Assessment Using MCS Based 
on DKG Surrogate Model

To efficiently carry out MCS for accurate reliability

assessment, the DKG method has to be combined with

MCS successfully. In this section, the DKG-based surro-

gate model using a hypercube local window in the nor-

malized standard design space is first explained and then

the flowchart of the proposed MCS based on the surro-

gate model is presented. 

3.1. Hypercube local window for surrogate model gen-

eration

Since the reliability analysis is carried out with pre-

scribed variations of random design variables, a local window

is more preferable to generate surrogate models than a

global window that covers entire design space. The hyper-

cube local window concept for generating surrogate models

is illustrated in Fig. 1 where g represents a constraint

function to be realized and the failure surface (limit state

function) distinguishes between feasible and infeasible

regions. The window size R in the standard normal U-

space where all random variables have the standard normal

distribution can be decided as 

R = cRβt  (10)

where cR is the coefficient, which is usually between 1.0

and 2.0, and βt is the target reliability index defined by

designers. Hence, sample points are first generated in the

U-space and then the points are transformed into the X-

space of actual design domain. It means the responses corre-

sponding to the sample points are calculated in the X-

space. 

After deciding the local window, evenly distributed Nr

initial samples are generated on the window based on the

Latin Centroidal Voronoi Tssellations (LCVT) [6, 7] and

then the surrogate model is produced. The accuracy of the

surrogate model generated with the initial samples is esti-

mated by

for i = 1~S, j = 1~n  (11)

where Var(y(xj)) is the variance of n true responses at the

sample points and S is the total number of testing points

generated using LCVT. The predicted mean square error,

 from the Kriging model in (1) is written as

.  (12)

Cnd+P

P
 ≤ n

min ζ θ( ) = 1
2
---ln R( ) + n

2
---ln σ2( )

η = 
mean MŜE xi( )( )

Var y xi( )( )
-----------------------------------------

MŜE

MŜE xi( ) = 
d xi( )
2Z1 α– /2

------------------⎝ ⎠
⎛ ⎞

2

Fig. 1. (Color online) Hypercube local window concept: g is

the constraint function.
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If the accuracy of a surrogate model is satisfactory (η ≤
1%), the model is used for reliability assessment using

MCS. Otherwise, more samples are sequentially inserted

within the local window until the surrogate model satisfies

the target accuracy condition. 

3.2. Proposed MCS based on surrogate model 

The original MCS is the most widely used method to

estimate the reliability indices of engineering application.

The underlying principle of MCS is to sample random

design points based on the probability and both success

(belongs to feasible region in Fig. 1) and failure (belongs

to infeasible region in Fig. 1) states contribute to the

reliability assessment as shown in Fig. 2(a) where g(xi) is

the constraint function of interest and nf is the number of

failure states. The main advantage of MCS lies on the

simplicity in numerical implementation but it often requires

expensive computational cost depending on the simula-

tion time for a given design problem, g(xi), once. Some

research in the field of power system, which utilizes the

genetic algorithm, particle swarm optimization or artificial

immune system [8, 9], has been carried out to render the

MCS computationally more efficient. However there is

still a consistent need for computationally efficient and

more accurate methods for reliability assessment of EM

device designs.

The proposed MCS is combined with the accurate

surrogate model, , based on the DKG method and

the hypercube local window, to decide success/failure sates

of the function at random samples. It can lead to dra-

matically reducing computational cost without degrading

accuracy of reliability values. The proposed program archi-

tecture shown in Fig. 2(b) follows as:

1) Input the number Nr of initial sampling points, ran-

dom variables and window size (R = 1.2 is used),

2) Executing computer simulation at given samples,

3) Generate a surrogate model based on DKG,

4) If the surrogate model satisfies the specified accuracy

(η ≤ 1%), go to next step. Otherwise, insert sequential

sample points and then go to 2),

5) Carry out the original MCS in Fig. 2(a) by using

,

6) Evaluate the probability of failure according to

 where the failure set is defined by

4. Numerical Examples

To verify the efficiency and accuracy of the proposed

method, two numerical examples are tested: The first is a

two-dimensional (2-D) mathematical example and the

second is a 4-D loudspeaker design problem with respect

to the random design variable space. The failure prob-

abilities (i.e. reliabilities) of constraint functions for the

examples are calculated at three nominal design points

which has been obtained from an initial design, deter-

ĝ xi( )

ĝ xi( )
Fig. 2. Flowchart of the proposed reliability assessment: (a)

original MCS, (b) proposed MCS based on DKG surrogate

model.
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ministic design optimization (DDO) and reliability-based

design optimization (RBDO) in the previous work [10].

Then the estimated probability values are compared with

those of the original MCS. 

4.1. 2-D Mathematical problem

Consider a 2-D probabilistic optimization problem of

which the mathematical formulation is given as 

minimize f(d) = − (13)

subject to P(gj(X(d) > 0) ≤  = 2.275%, j = 1, 2, 3

where f(d) is the objective function, gj is the constraint

function, d is the design variable vector given by d =

μ(X), and μ denotes the mean value vector of the random

vector X, respectively. The target failure probability value

in (13) is corresponding to βt = 2. The three constraint

functions, which include high nonlinear terms with respect

to the variables, are expressed by

g1(X) = 1 − 

g2(X) = 1 −  (14)

g3(X) = 1 − .

The properties of two random variables and three nominal

design points are presented in Table 1. 

In this example, only the accuracy of the proposed method

is compared with that of the original MCS because the

constraint functions are given analytically as in (14). The

constraint functions and nominal design points, denoted

by initial design, DDO and RBDO, are illustrated in Fig.

3 where contour lines belong to the objective function.

The failure probability values of the constraint functions

were calculated at each design point by using the pro-

posed method. For each constraint function, an elaborate

surrogate model was generated based on the DKG and the

local window. In each model, 5 initial samples were used

in the local window and then new samples were sequen-

tially inserted until the prescribed accuracy of the model

was achieved. After the DKG-based surrogate model for

each constraint was obtained with total 15 samples, each

failure probability was computed by the MCS algorithm

using not the true functions of (14) but their surrogate

models. For reliable results on the probability of failure,

500,000 of sample states (i.e. success or failure) were

checked in both cases of the proposed and the original

MCS methods. The failure probability values of the three

constraint functions are presented in Table 2 where the

smaller the value is, the more robust the current design is

to the variances of design variables. In the case of the

proposed method, the true functions were used only 15

times and the surrogate models were used for the rest.

The results show that the proposed method yields accurate

probability values of which the maximum error is less

than 1.12% on the basis of the original MCS values. 

4.2. 4-D Loudspeaker design 

The loudspeaker design problem subjected to variations

of design variables in [11] is used to show the efficiency
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Table 1. Properties of random variables and three nominal

design points.

Random

variables

Initial

design
DDO RBDO Distribution

Standard

deviation

X1 3.500 2.440 2.251 Normal 0.30 

X2 5.000 0.840 1.970 Normal 0.30 

f(X) −0.677 −2.627 −1.995 − −

Fig. 3. (Color online) Shapes of constraint functions. 

Table 2. Failure probability values at the initial, DDO and

RBDO design points.

Random

variables
Method

Initial

design
DDO RBDO

Pf (g1) (%)
MCS 0 52.84 2.57

Proposed 0 52.75 2.60

Pf (g2) (%)
MCS 0 47.80 1.95

Proposed 0 47.87 1.97

Pf (g3) (%)
MCS 0 0 0 

Proposed 0 0 0 

Function calls 
MCS 500,000 500,000 500,000

Proposed 15 15 15
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of the proposed method. For the simplicity, four design

variables shown in Fig. 4 were selected as random vari-

ables. The objective function is to keep an average flux

density B0 of 1.8 T at the air gap. The loudspeaker mass

with a tolerance of 5% with respect to the specified value

M0 of 7.5 kg is set as a constraint condition. The mathe-

matical formulation of the design problem is written by 

minimize f(d) = |B0 − B(X)|

subject to P(gj(X(d) > 0) ≤  = 5% (15)

g(X) = 1 − 

where B(X) and M(X) are the average flux density of the

air gap and the mass of the device at a current design

point, respectively. The target failure probability value

5% (i.e. reliability of 95%) in (15) is corresponding to βt

= 1.645. The properties of variables and three nominal

design points are presented in Table 3 which includes

their performance values. In Fig. 5, the two optimized

loudspeaker designs (DDO and RBDO designs) are com-

pared with the respect to the initial one.

In this problem, the estimation of the objective and

constraint functions requires executing an EM simulator

in order to take into account the nonlinear property of the

steel yoke. Here, a commercial simulator, called MagNet

VII based on the finite element method [12], and a desk-

top computer equipped with an Intel Core i7 CPU of 3.2

GHz were used. For the surrogate models of the constraint,

9 initial samples were used in the local window and the

new samples, 45, 25 and 30, were sequentially inserted at

the initial, DDO and RBDO designs, respectively until

the prescribed accuracy of the model was achieved. It

implies that even though the same function is realized by

the DKG method, the best surrogate model strongly

depends on the local position of the design point. For the

probability of failure of the constraint, different numbers

of sample states were checked in the cases of the pro-

posed and the original MCS methods because the original

MCS took quite a lot of EM simulation time: 500,000 for

the proposed MCS and 10,000 for the original MCS. For

the reliability analysis of the given constraint, the failure

probability value, EM simulation number and computa-

tion time are presented in Table 4 where, in case of the

initial design, the proposed method carried out only 54

EM simulations and then the surrogate model was used

for the MCS algorithm. The results show that the failure

probability values between the proposed and the original

MCS methods at the three nominal designs show a good

agreement with each other. However, in terms of the com-

Pf

tar

M X( ) M0–

0.05 M0×
----------------------------⎝ ⎠

⎛ ⎞
2

Fig. 4. (Color online) Axisymmetric configuration of a loud-

speaker.

Table 3. Properties of random variables and three nominal

design points.

Random

variables
Unit

Initial

design
DDO RBDO

Distribu-

tion

Standard

deviation

IW mm 1.14 0.76 0.82 Normal 0.05 

MD mm 1.42 1.16 0.67 Normal 0.08 

MH mm 10.87 8.31 10.3 Normal 0.25

TW1 mm 14.86 20.00 14.69 Normal 0.38

B T 1.76 1.80 1.80 − −

Mass kg 7.85 7.84 7.55 − −

Fig. 5. Comparison of three different loudspeaker designs.

Table 4. Performance indicators at the initial, DDO and

RBDO design points.

Random

variables
Method

Initial

design
DDO RBDO

Pf (%) 
MCS 44.45 43.79 6.54

Proposed 44.62 43.76 6.13

Function calls
MCS 10,000 10,000 10,000

Proposed 54 34 39

Computation

Time (sec.)

MCS 42,298 42,005 41,911

Proposed 487 355 379
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putation time, the proposed method (about 5.9 minutes

for the DDO point) was much faster by nearly 120 times

than the original MCS (about 11.7 hours for the DDO

point). 

5. Conclusion

For accurate and efficient reliability assessment, this

paper combined the original MCS scheme with the elabo-

rate surrogate models based on the DKG method and

hypercube local window. The method was successfully

applied to the mathematical 2-D problem and the 4-D

loudspeaker design. The results show that the proposed

method leads to reducing computational cost dramatically

without degrading accuracy of reliability values. The method

will be very useful to estimate the reliability of EM

devices designs in the future.
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