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This paper presents an analytical approach to the magnetic field and the inductances of slotless permanent

magnet machines with two types of winding. On the basis of a magnetic vector potential and a two-dimensional

polar system, analytical solutions for flux density due to a permanent magnet and current are obtained. In

addition, self and mutual inductances are obtained using the energy relationship. The analytical results are

extensively validated by the nonlinear finite element method and by experimental results.
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1. Introduction

Due to their high power density, high efficiency, and

low maintenance costs, permanent magnet machines are

emerging as a key technology for various applications

such as home appliances, industrial tools, and electric

vehicles [1, 2]. 

The self and mutual inductances can have an important

influence on both the steady-state and transient dynamic

performance of a machine. As in any electric circuit, the

inductance plays an important role in determining a

motor’s characteristics [2-4].

In high-speed conditions, the inductance may limit the

rate of the rise in current, with the result that the desired

current is never reached. In order to, high inductances can

cause a deteriorated torque-speed curve that is signifi-

cantly different from the ideal linear characteristic, which

may necessitate advancing the commutation in order to

increase the high-speed torque. Low inductances, on the

other hand, can result in an excessive ripple current in

pulse width modulation (PWM) controlled drive systems,

which increases the motor losses and torque ripple [5-7].

Methods for the electromagnetic analysis of electric

machines are widely classified in two categories: numeri-

cal methods and analytical methods, such as the space

harmonic method. Numerical methods such as the finite

element (FE) method provide an accurate means of deter-

mining the field distribution, taking due account of

saturation, etc., but they remain time-consuming. The

latter provide as much insight as analytical solutions into

the influence of the design parameters on a machine’s

behavior [8-11].

The common types of winding in electrical machines

are classified into two types: concentrated winding and

distributed winding. Therefore, this paper deals with an

analytical approach to the magnetic field, back-EMF, and

inductances of a slotless permanent magnet machine with

two types of winding, based on electromagnetic field

theory. In addition, all the analytical results are validated

using a two-dimensional (2-D) FE method that employs

the commercial package ANSOFT MAXWELL.

2. Armature Reaction Analysis of Slotless 
Permanent Magnet (PM) motor 

2.1. Analytical Model

Fig. 1(a) shows the analysis model with a four-pole,

three-phase slotless permanent magnet synchronous motor

with distributed winding. Its current modeling for an

analytical approach is presented in Fig. 1(b).

Fig. 2(a), on the other hand, shows the analysis model

with identical design specifications, but with concentrated

winding. Its current modeling for an analytical approach

is shown in Fig. 2(b). 
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2.2. Current Density Modeling According to Winding

Type

Fig. 1(b) and Fig. 2(b) show the Fourier series models

for armature current modeling for distributed and con-

centrated windings.

 

(1)

(2)

(3)

Here Ja, Jb, and Jc are the Fourier coefficients for each

phase, and n and ps are the harmonic order and the number

of pole pairs, respectively. The distributed winding and

concentrated winding coefficients can be obtained by (4).

  (4)

Here, Nt is the number of turns per coil, and S is the area

of the slot. Therefore, the current density J for stator

winding can be expressed as (5):

 

 (5)

2.3. Magnetic Field Analysis by Armature Reaction

Field

As shown in Fig. 3, for the convenience of the analytic

approach, this paper suggests a 2-D analysis model that

expresses each region with its own material property.

Based on this 2-D analysis model and Maxwell’s equations,

the magnetic field analysis was performed. The magnetic

vector potential for the analysis model in Cartesian coordi-

nates is expressed by (6) [1]. 

 
 (6)

 

For the magnetic field analysis for PM, the coil is

considered as air, and the flux density for the back-EMF

derivation is obtained in the air-gap region. For the

armature reaction field analysis for the winding current,

on the other hand, the PM is considered as air, and the

magnetic vector potential for the inductance derivation is
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Fig. 1. (Color online) Slotless stator PM motor with distributed winding: (a) analytical model, and (b) current modeling.

Fig. 2. (Color online) Slotless stator PM motor with concentrated winding: (a) analytical model, and (b) current modeling.
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obtained on the PM surface. In [9], analytical field solu-

tions for a permanent magnet machine were presented

that employ magnet pole shape modeling for the accuracy

of the analysis, and the reliability of this modeling was

proved. Hence, this paper refers to magnet pole shape

modeling for the accuracy of its analysis.

In this analysis model, PM magnetization is defined as

(7-1), and the mathematical modeling of the armature

current is expressed by (7-2). Here, Mrn is the Fourier

coefficient of magnetization in the radial direction, and Jzn
is the current density.

 

(7-1)

(7-2)

 

In the PM region, where the current does not exist, and

in the coil region, where it does exist, the Poisson equa-

tion can be obtained as (8-1) and (8-2), based on Maxwell’s

equations. Here, , based on the definition of

the magnetic vector potential.

 

(8-1)

(8-2)

 

By calculating the above equations, the governing

equation can be obtained. The governing equation in the

PM magnetic field can be derived as (9-1), and that in the

armature reaction field can be obtained as (9-2). Here, r is

the radial length.

(9-1)

(9-2)

 

The general solution can be achieved by solving the

homogeneous solution and particular solution in that

governing equation. (10-1) and (10-2) present the general

solution in the PM magnetic field and the armature

reaction field, respectively. 

 

(10-1)

(10-2)

 

Here A0, B0, C0, and D0 are the coefficients determined

by the imposed boundary conditions, and AznP is a parti-

cular solution. (11-1) and (11-2) present the particular

solutions in the PM magnetic field and armature reaction

field, respectively.

 

(11-1)

 (11-2)

Through these general solutions, the characteristic

equation of the flux density in each region can be ex-

pressed. The boundary conditions used in the analytical
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Fig. 3. (Color online) Simplified conceptual model for 2-D analytical method for (a) PM and (b) current. 
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prediction of the magnetic vector potential due to the

winding current are presented in Table 1. Applying those

boundary conditions to the field equations results in the

following matrix: 

(12)

Here Tex is the coefficient matrix, and it can be solved

by a computer program quickly and conveniently. Solving

this matrix equation can determine the coefficients in

terms of the magnetized distribution, as well as other

material and dimensional parameters. With the derived

general solution, the flux density distribution in the

normal and tangential direction according to the contour

lines in each region can be determined by (15). 

(15)

2.4. Back-EMF

The back-EMF is given by the product of the angular

velocity ω and the rate of change in the flux linkage with

respect to the angular position; it is written as (16), where

λf and η are the flux linkage and the coil pitch, respec-

tively. 

(16)

2.5. Self- and Mutual Inductance

The self and mutual inductances are obtained from the

energy relationship as 

(17)

The W can be divided into two components using the

vector identity − the WI component, associated with the

boundary, and the WII component, associated with the

current carry − as follows:

(18)

Here, the surface integral is zero, since the surface en-

closes the volume containing all the magnetic energy,

which requires that A and H be zero on the bounding

surface. Hence, (19) can be defined as

(19)

Using (19), we can derive the self-inductance Lsm and

mutual inductance LM in one-phase winding. Thus, (20)

can be derived [3]. 

(20)

Here, La is the active length of the machine, and Li,j is

the self-inductance between phases when i is not equal to

j. On the other hand, when i and j are equal, Li,j is the

mutual inductance of a phase of winding.

3. Results and Discussion

3.1. Design specifications and manufactured model

Fig. 4 shows the manufactured model for experimental

verification, which is a distributed winding type, four-

pole, three-phase slotless permanent magnet motor, whose
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Table 1. Boundary Conditions

 Region  PM  Armature  Radius  Boundary Conditions (Armature)  Boundary Conditions (PM)

 I  Rotor  Rotor
 r = R0

 r = Rrc

 II  PM  Air  r = Rair

 III  Air  PM  r = Rco

 IV  Stator  Stator  r = Rsc
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Fig. 4. (Color online) Manufactured model of slotless PM

motor.
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design dimensions and specifications are listed in Table 2.

3.2. Magnetic Field, Back-EMF, and Inductance

Concentrated winding is usually used in a brushless dc

(BLDC) motor driven by trapezoidal voltage, in which

the coils are easily wound in the stator slots. The back-

EMF voltage induced by this type of winding, however,

contains many harmonic components. Distributed wind-

ing is usually used in a brushless AC (BLAC) machine

driven by sinusoidal voltage, and its end-winding length

is longer than that in the concentrated type of winding.

This type of winding, however, achieves more sinusoidal

back-EMF than the concentrated type of winding type [1,

2].

Fig. 5 shows a comparison of the back-EMF in con-

centrated winding and in distributed winding as obtained

by the analytical method, FEM and measurements, and

the results for its harmonic components, as shown in Fig.

6. The distributed winding type has a smaller THD value

compared to the concentrated winding.

Fig. 7 and Fig. 8 show a comparison of the results of

the normal and tangential components of the flux density

as obtained by the FEM and the analytical method. The

results are in good agreement for both components,

which confirms the validity of the results presented in this

paper.

Table 2. Design Specifications of Slotless PM Motor

Outer Stator Radius 26.5 [mm] Inner Coil Radius 15.75 [mm]

Outer Rotor Radius 11.25 [mm] Number of Poles 4

Outer PM Radius 13.75 [mm] Output Power 1 [kW]

Stack Length 50 [mm] Rated Speed 24000 [rpm]

Inner Stator Radius 20 [mm] Rated Current 3.8 [A]

Inner Rotor Radius 4.5 [mm] Rated Torque 4 [kg.cm]

Fig. 5. (Color online) Comparison of back-EMF in distributed

and concentrated types of winding.

Fig. 6. (Color online) Comparison of harmonic components in

distributed and concentrated types of winding.

Fig. 7. (Color online) Normal flux density distribution at the

air-gap center in distributed and concentrated types of wind-

ing.

Fig. 8. (Color online) Tangential flux density distribution at

the air-gap center in distributed and concentrated types of

winding.
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Fig. 9 shows concepts of AC standstill test for inductance

measurement. First, for the d-axis alignment of the rotor,

a positive DC voltage was applied to phase A, while the

negative DC voltage was applied to phase B and C shown

in Fig. 9(a). Then variable AC voltage is applied to the

circuit shown in Fig. 9(b), voltage and current are mea-

sured. From these results, the winding inductances is

obtained as (21) [12]

(21)

Table 3 compares the measured and predicted winding

inductances. As can be seen in the table, the analytical

results are in good agreement with the FEM results. How-

ever, the predicted winding inductances as compared to

the measured inductance of the manufactured model show

an error of approximately 9.6%. This is caused by the end

turn inductance, which is not covered in this paper, and

by a number of mechanical errors that emerged in the

manufacturing process. As predicted in Table 3, it can be

observed the inductance with concentrated winding is

lower than that distributed winding about 47%. 

4. Conclusion

This paper has presented an analytical approach to the

magnetic field and inductances of a slotless permanent

magnet (PM) machine with two types of winding. The

distributed winding type has a smaller THD value and

larger inductance value compared to the concentrated wind-

ing. The analytical procedure that was performed using

the space harmonic method was validated by FEM and an

experiment, whose results are in good agreement. Since

this method can dramatically reduce the analysis time

with high reliability, we believe that this paper can con-

tribute to other related works, such as the initial design of

permanent magnet machines according to design specifi-

cations.
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Fig. 9. (Color online) Concepts of AC standstill test for inductance measurement.

Table 3. Results of Winding Inductances

Winding
Analytical result FEM result

Measured
Self-Inductance Mutual-Inductance Self-Inductance Mutual-Inductance

Distributed 190.4[µH] −75.80[µH] 191.6[µH] −75.99[µH]  210.6[µH]

Concentrated  90.81[µH] −25.16[µH] 91.95[µH] −26.18[µH] −


