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A reliability-based optimization method for electromagnetic design is presented to take uncertainties of design

parameters into account. The method can provide an optimal design satisfying a specified confidence level in

the presence of uncertain parameters. To achieve the goal, the reliability index approach based on the first-

order reliability method is adopted to deal with probabilistic constraint functions and a double-loop optimiza-

tion algorithm is implemented to obtain an optimum. The proposed method is applied to the TEAM Workshop

Problem 22 and its accuracy and efficiency is verified with reference of Monte Carlo simulation results.
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1. Introduction

Due to a growing demand for high-performance and

high-reliability electromagnetic (EM) devices or equip-

ments, attention has recently focused on dealing with un-

certain design parameters such as manufacturing errors,

operating conditions, material properties, etc. [1-6]. The

methodology for treating optimization problems in the

presence of uncertainties of design parameters/variables

can be categorized into two approaches. The first is ro-

bust design optimization (RDO) based on several appro-

aches, such as the worst-case analysis, gradient index, six

sigma, etc., to improve the product quality by minimizing

variability of the output performance functions [1-3].

However, it does not address the quantitative assessment

of performance reliability (i.e. at what confidence or prob-

ability level the robustness of an EM design is achieved).

The second is reliability-based design optimization (RBDO)

utilizing the probabilistic reliability analysis to achieve

product reliability at a given probabilistic level [4, 5].

Until now, most of the reported attempts for EM designs

fall into RDO. Although the reliability analysis has been

applied to a superconducting magnetic energy storage

system (SMES) design [6], it is to merely assess the

robustness of performance functions considered at different

design points and not to execute design optimization of

SMES.

For the first time, RBDO based on the first-order

reliability method (FORM) is applied to an EM device in

this paper. The method estimates the probability of failure

(i.e. a nominal design point dose not satisfy the perfor-

mance condition given) by the first-order Taylor series

approximation of the performance function when probabi-

listic information of random variables is known. Failure

probability is expressed in terms of the integral of joint

probability density function (PDF) with respect to random

variables and it corresponds to the most difficult part in
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Fig. 1. (Color online) DO and RBDO optimum from reliabil-

ity point of view: g1 and g2 are the constraint functions [4].
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implementing RBDO. To efficiently calculate the failure

probability, the reliability index approach (RIA) is em-

ployed. 

By incorporating reliability concept into design optimi-

zation, the probabilistic feasibility of constraints in RBDO

can be much improved. For instance, Fig. 1 illustrates that

the design points are modified to achieve the desired

reliability when an optimum obtained by deterministic

optimization (DO) has a relatively low reliability due to

random variables. 

RBDO formulation based on RIA was successfully ap-

plied to the TEAM Workshop Problem 22 [7]. Using the

proposed method, RBDO optimum of SMES windings

was obtained where two design constraints (stored energy

and geometrical constraint) maintain high reliabilities

(greater than 95%) under the uncertainties of design vari-

ables. In addition, DO, RDO [2], and RBDO optima were

compared to each other in terms of reliability of design.

To validate the accuracy and efficiency of the RBDO

model based on RIA, Monte Carlo simulation (MCS) was

performed. 

2. Reliability-Based Design Optimization

2.1. Definition of RBDO model

A deterministic optimization is generally formulated as:

minimize   f (d)

subject to gi(d) ≥ 0, i = 1,..., nd  (1)

d
L ≤ d ≤ dU, d ∈�Rn

where f(d) is the objective/cost function, gi is the con-

straint function, d is the design variable vector, and dL

and dU mean the lower and upper bound of d, respe-

ctively.

On the other hand, the probabilistic constraints are new-

ly introduced to the RBDO formulation when considering

uncertainties of the design variables [4]. 

minimize  f (d)

subject to P(gi(X) < 0) ≤ Pt,i, i = 1,2,...np  (2)

d
L ≤ d ≤ dU, d ∈�Rn

where d is given by d = μ(X) and μ denotes the mean

value vector of the random vector X. Target failure prob-

ability Pt,i is given for ensuring a certain safety/confidence

level with respect to the ith constraint function. The

failure probability Pf  of constraint gi is expressed as

 (3)

where R denotes reliability and fX(x) is the joint PDF of

X. 

2.2. First-order reliability analysis in RIA

To evaluate the multiple integration of (3) effectively,

the reliability analysis based on FORM requires following

two procedures. 

1) Transformation of a design space

Original random variables X are transformed to un-

correlated normal random variables U of which each has

zero mean and unit standard deviation (SD). That is, the

constraint function g(X) in X-space is mapped onto

g(T(X)) ≡ g(U) in U-space. In the case of normal random

variable Xk, the transformation is given as follows

 (4)

where μk and σk are the mean and SD of the random

variable Xk. When the nonnormal random variables are

involved, Rosenblatt transformation can be used [5].

2) Linear approximation 

Using the first-order Taylor series, g is approximated by

a linear function at the design point u*.

 (5)

where g(u*) is the gradient vector of g and u* is called

as the most probable point (MPP) on the failure surface

g(u*) = 0.

The first-order reliability index β in RIA is obtained by

formulating a sub-optimization problem as:

minimize

subject to  g(U) = 0.  (6)

MPP (u*g(U)=0) is geometrically interpreted as the minimum

distance point on the failure surface from the origin in U-

space and the reliability index is defined by β = ||u*
g(U)=0||

as shown in Fig. 2. 

Pf = 1−R = P gi X( ) < 0( ) =  
g
i
X( ) < 0

 

∫  ∫ fX x( )dx

Uk = 
Xk μk–

σk
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*( )+∇g u

*( )
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g u( ) g u

*( )–( )

∇

U

Fig. 2. (Color online) Geometrical interpretation of MPP and

reliability index in U-space.
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For solving (6), the Hasofer Lind and Rackwitz Fiessler

(HL-RF) method [5] is employed here because of its

simplicity and efficiency. The flowchart of the HL-RF

method is illustrated in Fig. 3.

Finally, the probability of failure of (3) is approximated as

 (7)

where Φ(•) is the standard normal cumulative distribution

function (CDF). 

2.3. RBDO based on RIA

Adopting RIA, the RBDO formulation can be rewritten

as:

find d

minimize f (d)  (8)

subject to Φ(−βi(U)) ≤ Φ(−βt,i), i = 1,..., np

 dL ≤ d ≤ dU, d ∈ Rn

where βt,i is the target reliability index. The probabilistic

constraints of (8) is equivalently expressed as

.  (9)

Finally, RBDO requires two kinds of optimization proce-

dures simultaneously: One is for evaluating failure prob-

ability of each constraint and the other is for optimizing

the cost function as satisfying the given constraints.

3. Numerical Implementation

As aforementioned, the implementation of RBDO con-

sists of a double-loop optimization structure as shown in

Fig. 4. It means the parametric optimization problem has

sub-problems for reliability analysis for each iterative

design. Therefore, the procedure of the proposed RBDO

problem can be divided into two optimization procedures

as follows: 

1) inner loop: sub-optimization procedure for evaluating

failure probability of each constraint (dotted box in Fig. 4),

2) outer loop: overall optimization procedure to optimize

the cost function with constraints satisfaction.

 For outer loop optimization, a traditional optimization

algorithm, sequential quadratic programming (SQP) is

adopted here. Usually, the computational demand may be

high if many probabilistic constraints are imposed or the

associated function evaluations are very expensive. Thus,

an alternative method should be studied to improve an

efficiency of a probabilistic design optimization. 

4. Comparison of Different SMES Designs

A RBDO formulation for minimizing an objective func-

tion subject to a set of constraints is expressed as:

minimize f (d) =

subject to P(gi(X) < 0) − Φ(−βt,i) ≤ 0 i = 1, 2

g1(X) = (10)

,

X = [R2, D2, H2], X
L ≤ X ≤ XU

Pf = P gi U( ) 0≤( ) Φ β–( )≈

βi U( ) βt i,≥
 

i 1=

21

∑ Bstray,i d( ) 2

1
E X( ) Eo–

0.05 Eo×
------------------------⎝ ⎠

⎛ ⎞
2

–

g2 X( ) = R2 R1–( )−1
2
--- D2 D1+( )

Fig. 3. Flowchart of HL-RF method. 
Fig. 4. Flowchart of RBDO based on RIA.
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where Bstray,i is the stray field calculated at the ith

measurement point along line a and line b, E is the stored

magnetic energy with a target value Eo of 180 MJ and the

wanted confidence level βt,i is set to be 1.645 correspond-

ing to the failure probability value of 5% (i.e. reliability

of 95%). It is assumed that the random variables follow

the normal distributions and the SD values of R2, D2 and

H2 are 10 mm, 5 mm, 10 mm, respectively. 

The optimization problem was solved using two differ-

ent optimization methods where design sensitivity values

are calculated with finite differencing method (FDM).

The first is a deterministic method without taking prob-

ability distributions of design variables into account; the

second approach is the proposed RBDO. Starting with an

initial design, the deterministic and RBDO optima are

presented in Table 1. The result of RDO in the previous

article [2], where the gradients of performance function

required for the second-order sensitivity information were

exploited, is added in Table 1 for proving the validity of

RBDO. It is observed that total number of function calls

of RBDO is more than four times as high as that of DO

because of the inherent double-loop optimization struc-

ture. The RDO and RBDO optima produce better values

of the stray fields than DO optimum. It is inferred that the

deterministic optimum is trapped in one of the local minima

near the constraint boundaries, while better optimal solu-

tions are found as the feasibility robustness of the con-

straints is improved. 

For the initial design and three different optima, the

failure probability values estimated from MCS and RIA

are listed in Table 2. Assuming MCS results to be refer-

ence values, the error of RIA is defined by 

Error(%) =  (11)

where β, βMCS are the reliability indexes obtained from

RIA and MCS, respectively, and Pf,MCS is the failure prob-

ability of MCS. The symbol Φ−1(•) denotes the inverse

standard normal CDF.

As shown in Table 2, RIA provides acceptable results

on the constraint g1 even with less than 40 simulations for

all cases. Although MPP is successfully found at the RBDO

optimum, RIA gives a bit inaccurate estimation (error =

34.2%). It indicates that the first-order approximation does

not properly express the nonlinear behavior of g1. 

Since g2 is a linear function and all associated random

variables are normal distributions, the failure probability

of g2 can be calculated analytically without executing EM

or reliability analyses. 

The TEAM benchmark problem 22 of SMES depicted

in Fig. 5 is concerned with RBDO. For simplification of

the design problem, a constraint of the current quench

β βMCS–

βMCS

-------------------- × 100, βMCS = Φ 1–
– Pf MCS,( )

Table 1. Design variables and performance indicators at the

deterministic, RDO and RBDO Optima.

Design

variables
 Unit

 Initial

 design

 DO

 optimum

 RDO 

 optimum [2]

 RBDO 

 optimum

R1 mm 1977 1977 1977 1977

D1 mm 404 404 404 404

H1 mm 1507 1507 1507 1507

R2 mm 2340 2347 2348 2350

D2 mm 310 253 233 242

H2 mm 1780 1732 1871 1800

J1 A/mm2 16.30 16.30 16.30 16.30

J2 A/mm2 16.19 16.19 16.19 16.19

Bstray µT 6,772 157 34 86

Energy MJ 180 174 181 178

Function calls -  - 82 - 352

Table 2. Results of failure probability estimation at four

different designs.

Method
Initial 

design

DO

optimum

RDO 

optimum

RBDO 

optimum

Pf (g1)

(%)

RIA 10.1 30.2 4.0 1.2

MCS 11.5 29.4 6.2 4.5

Error (%) - 6.1 -4.5 14.0 34.2

Function 

calls (g1)

RIA

MCS

40

10,000

12

10,000

20

10,000

16

10,000

Pf (g2)

(%)

RIA 28.0 3.02 × 10−3 1.76 × 10−5 7.12 × 10−5

Exact 28.0 3.02 × 10−3 1.76 × 10−5 7.12 × 10−5

Error (%) - 0 0 0 0

Function 

calls (g2)
RIA 6 6 6 6

Fig. 5. (Color online) Configuration of the SMES device.



− 50 − Reliability-Based Design Optimization of a Superconducting Magnetic Energy Storage System… − Giwoo Jeung et al.

condition on the superconductivity magnet is not con-

sidered here. Only three of total eight design variables,

R2, D2 and H2, are selected as independent random

variables. 

,

, (12)

where the mean and SD values of R2, D2 are denoted as

, , , , respectively. The RIA converges to

exact failure probability values with only 6 function

evaluations. 

At the DO optimum, the reliability of g2 of initial

design (82%) is remarkably increased to 99.997%. How-

ever, the violation probability of g1 is deteriorated from

10.1% to 30.2%. On the other hand, the failure prob-

abilities of g1 and g2 at the DO optimum are much im-

proved at both the RDO and RBDO optima. It is revealed

that RBDO yields a better optimal solution than RDO in

terms of the reliability of the two constraint functions

considered. 

In Fig. 6, the dimensions of the three optimized

magnets are compared with each other with respect to the

initial ones. As shown in the figure, the distance between

the two windings resulting from the initial and DO

designs is too small to be fabricated in practice. On the

other hand, both of RDO and RBDO optima produce

more acceptable results by improving the probabilistic

feasibility of constraints. 

5. Conclusion

A reliability-based design optimization based on the

reliability index approach has been successfully applied to

the SMES design. The results reveal that the proposed

method provides an optimum satisfying the specified

confidence level in the presence of uncertain parameters.
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Fig. 6. Comparison of magnet dimensions after optimization.


