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The electron spin resonance lineshape (ESRLS) function for the electron spin resonance linewidth (ESRLW) of

Cr3+ (S = 3/2) in ferroelectric lithium niobate single crystals doped with 0.05 wt% of Cr, is obtained by using the

projection operator technique (POT), developed by Argyres and Sigel. The ESRLS function is calculated to be

axially symmetric about the c − axis and analyzed by using the spin Hamiltonian HSP = µB (B · g↔ · S) + S ·D
↔

· S

with the parameters g = 1.972 and  D = 0.395 cm−1. In the ca plane, the linewidths show a strong angular depen-

dence, whereas in the ab plane, they are independent of the angle. This result implies that the resonance center

has an axial symmetry along the c − axis. Further, from the temperature dependence of the linewidths that is

shown, it can be seen that the linewidths increase as the temperature increases, at a frequency of v = 9.27 GHz.

This result implies that the scattering effect increases with increasing temperature. Thus, the POT is consid-

ered to be more convenient to explain the scattering mechanism as in the case of other optical resonant systems.

Keywords : electron spin resonance linewidth (ESRLW), electron spin resonance lineshape (ESRLS), spin Hamilto-

nian, projection operator technique (POT), lithium niobate (LN), dynamical electron spin susceptibility (DESS)

1. Introduction

The generation of electron spin resonance linewidth

(ESRLW) in ferroelectric single crystals as a response to

a circularly polarized radiation is a topic under extensive

experimental and theoretical study [1-3]. The study of

magneto-optical transitions of electron spin in crystals has

almost always been restricted to the frequency range

between far infrared and visible light involving inter-band

transitions in ESR. Usually, ESR spectrometers are operated

at several fixed frequencies such as the X-band (≈9 GHz)
and occasionally at the K- and Q-bands. Trivalent ions,

including those of transition metals and rare earth

elements, belong to the most important impurities in

lithium niobate (LN, LiNbO3). These ions are important

because of their critical influence on the properties of LN,

such as its domain structure, electro-optical coefficients,

light absorption, and refractive indices and their consequences

for present and potential applications. The elucidation of

the position of impurities in the LN crystals, their nearest

surroundings, and the process of change compensation is

vital in order to tailor the fundamental properties of LN

for various applications. LN crystals have been utilized in

ultrasonic transducers [4, 5], electro-optical modulators

[6-8], surface acoustic wave devices, etc. They are readily

doped with rare earth and transition metal impurities, and

the doped crystals have found applications in holographic

storage and as laser hosts. ESR is the most direct method

for determining the paramagnetic impurity center structure

and its characteristics. Taking into account that Cr3+ [1-3]

is a paramagnetic ion, it is very useful to carry out ESR

measurements.

The theoretical studies performed on resonant system in

the presence of an external electromagnetic radiation thus far

have usually been based on the following methodologies:

the Boltzmann transport theory, Green’s function approach

[9], the force-balance approach, Feynmann’s path integral

approach, the Stark-ladder representation approach, the

Wigner-representation approach, and the projection operator

technique (POT) [10-21]. Among these, in this study, we

focus on the POT approach of Argyres and Sigel [16].

The projection operator in the method of Argyres and

Sigel contains the index of electron spin. While utilizing

this method, we succeeded in formulating a response

theory [14, 15, 21], which includes the Kubo theory as

the lowest-order approximation. The derived lineshape

function is similar to those obtained by other methods
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[10-13]. Further, it is shown that the amount of calcula-

tion involved in the technique of Argyres and Sigel is

considerably lesser than that required for other technique.

For LN crystal in the presence of a perpendicular static

magnetic field, the electron spin resonance lineshape

(ESRLS) spectrum, up to a constant factor, can be expressed

as

(1)

where  and  are the real and the

imaginary parts respectively, of the ESRLS function. The

correction to the resonance field can then be determined

accurately from the equation 

because  is a slowly varying function of the

angular frequency or the magnetic field. 

In this study, for the ESR of Cr3+ (S = 3/2) in ferroelectric

LN crystals doped with Cr, the ESRLS is obtained using

the POT developed by Argyres and Sigel. The ESRLS is

calculated to be axially symmetric about the c − axis and

analyzed using the spin Hamiltonian with the parameters

g = 1.972 and D = 0.395 cm−1. The scattering strength of

the ESRLS is expanded in the conventional series

representation. On the basis of numerical calculation, we

analyzed the temperature and the angular dependence of

the ESRLS at a frequency of v = 9.27 GHz in external

electromagnetic radiation.

2. Structure and Lineshape Function

LN’s structure at temperatures below its ferroelectric

Curie temperature (approximately 1210 oC) [8] consist of

planar sheet of oxygen atoms in a distorted hexagonal

close-packed configuration. The octahedral interstices formed

in this structure are one-third filled by lithium atoms, one-

third filled by niobium atoms, and one-third vacant. In the

c direction, the atoms occur in the interstices in the

following order:…, Nb, vacancy, Li, Nb, vacancy, Li,….

In the paraelectric phase above the Curie temperature, the

Li atoms lie in an oxygen layer that is c/4 away from the

Nb atoms are centered between oxygen layer. These

positions make the paraelectric phase non-polar. As the

temperature decreases from the Curie temperature, the

elastic forces of the crystal become dominant and force

the lithium and niobium ions into new positions. The

charge separation resulting from this shift of ions relative

to the oxygen octahedral causes LN to exhibit spontaneous

polarization at temperatures below 1210 oC. LNO crystals

are built up of regular arrangements of atoms in three

dimensions, these arrangements can be represented by a

repeat unit of constituent atoms or ions, which can be

understood in terms of packing, linking, or both. As mentioned

above, in the LNO crystallographic frame, there are three

kinds of constituent octahedra, LiO6, NbO6, and □O6

where □ represents a vacant site. For the ferroelectric

phase of LNO crystals, octahedra sharing faces along the

c-axis from a helix, while octahedra at the ab plane share

their common edges. The basic structure unit of LNO

crystals may be regarded as the perfect octahedral without

any distortion, the distortion is formed by their different

linkages when they stack each other in the real

crystallographic frame. Thus, LN belongs to the broad

class of displacement ferroelectrics. In the ferroelectric

phase a LN crystal exhibits three-fold rotation symmetry

about its c − axis. Thus, it is a member of the trigonal

crystal system. In addition, it exhibits mirror symmetry

about three plans that are 60o apart and intersect forming

a three-fold rotation axis. These two symmetry operations

then classify LN as a member of the 3m point group. It

also belongs to the R3c space group. In the trigonal

system, two quite different unit cells can be chosen,

hexagonal or rhombohedral. We choose crystal structure

in the ferroelectric phase viewed as a hexagonal unit cell

for LN. In this unit cell, the c − axis is defined as the axis

about which the crystal exhibits three-fold rotation

symmetry.

ESRLS is characterized by the imaginary part of the

dynamical electron spin susceptibility (DESS) [11]:

(2)

(3)

where σ±(t) = exp(iLt)σ±, L being the Liouville operator

corresponding to the Hamiltonian of the system. Here, V,

ge, μB, ω,  and [ , ] are the volume of the system,

Lande g-factor of an electron in vacuum, Bohr magneton,

the frequency of the incident electromagnetic radiation,

ensemble average of the system and the usual commutator,

respectively. We denote the sum of the spin matrix of the

total electrons in the system as σ± = σx ±iσy. For an external

circularly polarized radiation 

with angular frequency ω applied along the z − axis, we

consider the interaction between electron, and describe

the system in terms of a Hamiltonian. It consists of three

parts: orbital energy, Zeeman energy, and spin denoted as

H =HF +HZ +Hs. Additionally, orbital energy HF(10
5 cm−1)

further consists of four parts, i.e., HF =HK +He +Hee +Hso,

where HK, He, Hee and Hso(10
2 cm−1) are kinetic energy,

Coulomb energy, electron-electron interaction and spin-

orbit coupling, respectively [22-26],
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(4)

where ξ is the spin-orbit coupling coefficient. The ESR in

the single crystal system can be characterized by the

Hamiltonian HESR

HESR = HF + Vss + Ven + Vcf + Vz (5)

where Vss, Ven, Vcf and Vz are the spin-spin interaction

(100 cm−1), the magnetic moment of nuclear (10−2 cm−1),

the crystal fields effect (10
4 cm−1) and the Zeeman effect

(100 cm−1), respectively. Starting from the electronic

configuration of free Cr atoms, Cr3+ usually denotes the

Cr oxidation state with the half-filled 3d3 shell. Within

LN crystal structures, this formally threefold ionic charge

is distributed over the neighboring host valances and

screened by the valence band electrons, so that the

ionization threshold is effectively reduced as compared to

free Cr ions. Generally, it is incorrect to employ crystal

field theory to describe the zero-field-splitting (ZFS) of

impurity ground states in LN crystal structures because of

the presence of continuum electronic states that hybridize

with the atomic Cr orbital. However, the phenomenological

form of the crystal field spin Hamiltonian is still correct,

even if the true origin of the occurring parameters do not

agree with real crystal fields. We consider the ESR

spectra at temperatures low enough such that the dynamic

process is too slow to affect the ESRLS (the so-called

static regime). Therefore, in the static regime, the effective

Cr3+ ground state manifold of spin state can be described

by the spin Hamiltonian which contains the ZFS terms.

This Hamiltonian can be represented as

Hsp = μB(B · g↔ · S) + S · D
↔

· S

(6)

The ESRLS function is calculated to be axially

symmetric about the c − axis and analyzed in terms of the

spin Hamiltonian with the parameters g = 1.972 and

D = 0.395 cm−1. The matrix elements of the spin Hamiltonian

are given in Appendix (here, the angles θ and ϕ are the

polar and azimuthal angle, respectively, of the direction of

the magnetic field in the principal axes system of g↔ and D
↔

tensors).

Let  be an eigenstate of HF for a system in

which the spin is up and  an eigenstate in which

the spin is down with the same orbital. Then the

Schrödinger equation is

(7)

We introduce the annihilation and creation operators,

 and , for an eigenstate of HF. In terms of these

operators, we can rewrite the commutator as 

(8)

where the spin matrices on the right hand side denote

electron operators in a Heisenberg representation. For

evaluating the right hand side of Eq. (3), we take into

account only those terms in Eq. (8) that give a zeroth-

order response line; other terms contribute only to give a

broad background. We thus will obtain the correct ESRLS

absorption. From Eq. (3) we obtain

(9)

where , the ordinary Fermi-Dirac distribution

function. We see that for the calculation of , it

suffices to calculate

(10)

(11)

There may be various methods for evaluating such a

quantity that yield almost the same result; however it is

most effectively by using the POT adopted by Argyres

and Sigel, which is a type of equation of motion method.

For an external electromagnetic radiation with a frequency

ω applied to the LN crystals, the absorption power

delivered to the system is given by

(12)

The absorption power is described by the Lorenzian

form. The ESRLS is important when it comes to

understanding microscopic properties of the electronic

state. Most of the other theories require a calculation of

the absorption power in order to obtain the ESRLW,

HF=
h
2

2mi

-------- ∇2

i
∑–

1

4πε0

-----------
Ze

2

ri
--------

i
∑

1

4πε0

-----------
e
2

ri rj–
----------------

i j<
∑+–

+ ξ ri( )Li Si⋅
i
∑

=μBgSZB D SZ

2 1

3
---S S 1+( )–+

+S;Cr
3+| 〉

S;Cr
3+

–| 〉

HF S± ;Cr
3+| 〉= ε S±

1

2
--- hωz±⎝ ⎠

⎛ ⎞ S± ;Cr
3+| 〉

a S± a S±

+

σ− σ+ t( ),[ ]〈 〉EA= S σ+ t( ) S+–〈 〉 +S σ+ t( ) +S〈 〉   {[
S±
∑〈

− S σ+ t( ) −S–〈 〉 }a S–

+
a+S

+ +S σ+ t( ) −S〈 〉 a S–

+
a S– a+S

+
a+S–( )]〉EA

= S σ− +S–〈 〉 +S σ+ t( ) −S〈 〉 f S– f+S–( )
S±
∑

χ
″

+− ω( )=
ge

2
μB

2

4Vh
----------- Re f S– f+S–( )

S±
∑ S σ− +S–〈 〉 dt

0

∞

∫a +0→
lim

iωt at––( ) S σ+ t( ) +S–〈 〉exp

f S± = a S±

+
a  ±〈 〉

χ
″

+− ω( )

χ
″

+− ω( )=
ge

2
μB

2

4Vh
----------- Re

f S– f+S–

i ω ω0–( ) Π +−

ESR
ω( )+

--------------------------------------------------
S±
∑

Λ+−

ESR
ω( ) iωt–( ) +S σ+ t( ) −S〈 〉= +S R ω( ) −S〈 〉exp

0

∞

∫≡

P
ESR

ω( )=1
2
--- H0

2
 Re χ

″

+− ω( ){ }



Journal of Magnetics, Vol. 16, No. 2, June 2011 − 111 −

because the whole DESS must be integrated over the

electron wave vector. However, in POT, the integration

over the electron state appears separately in the numerator

and denominator of DESS. This POT has advantageous

aspects in that we can directly obtain the ESRLW and

well explain the dependence of the temperature and the

angle. The absorption power caused by the external field

can be expressed by a contribution to DESS that is

proportional to the imaginary part of the DESS and the

square of the amplitude of an external field. The modulus

 can be treated as a driving force of ESR. It determines

the external frequency and the amplitude of the oscillating

component of magnetization. The square of  rules

the absorption power, i.e., the amplitude of the ESR

absorption signals.

We introduce a convenient notation 

for any arbitrary operator . We note that the operator

R(ω) obeys the equation (ω − L)−1σ+ = R(ω). We must

evaluate the quantity R+S−S(ω). Following Argyres and

Sigel, we define the projection operators P+− and their

abelian inverse as follows:

(13)

Q+− = 1 − P+− (14)

We note that P+−σ+ = σ+, Q+−σ+ = 0, = P+− and P+−

Q+− = 0, while we split R(ω) = P+−R(ω) + Q+−R(ω) and

then operate with P+− and Q+− separately to obtain with

the use of relations

(ω − P+−L)P+−R(ω) − P+−LQ+−R(ω) = σ+ (15)

(ω − Q+−L)Q+−R(ω) − Q+−LP+−R(ω) = 0 (16)

Solving Eq. (15) for Q+−R(ω) in terms of P+−R(ω), we

obtain

Q+−R(ω) = GQ(ω)Q+−LP+−R(ω) (17)

where GQ(ω) = (ω −Q+−L)
−1 =GF +GFQ+−LSGF +…, GF(ω)

= (ω - LF).

We substitute Eq. (17) into Eq. (15) and obtain for P+−

R(ω) the equation

[ω − P+−L{1 + GQ(ω)Q+−L}]P+−R(ω) = σ+ (18)

We note that all terms on the left hand side of Eq. (18)

are, according to Eq. (13), simple scalar multiples of the

operator σ+. Thus we obtain for the quantity of interest,

R+S−S(ω), the expression

(19)

Since we are interested in the spin Hamiltonian Hsp, it is

convenient to introduce the Liouville operators LF and Lsp

corresponding to HF and Hsp, respectively, i.e., L = LF + Lsp

with  and . We then note

that LFσ+ = ωσ+, Q+−LFσ+ = 0, and (LFQ+−= )+S−S = 0 as

it follows from the definitions of LF and Q+−. We can

write Eq. (19) in the form

(20)

Where the ESRLS function  is defined as

follows:

(21)

In order to calculate Eq. (21), the propagator is

expanded with a conventional series representation. For

the propagator , which is contained in Eq. (21)

with forbidden transitions ΔS ≠ ±1, we obtain

(22)

(23)

Since we can obtain the ESRLS function directly from

the numerical calculations in the POT[Appendix], we can

easily analyze ESRLWs for quantum transitions of an

external radiation at a frequency of v = 9.27 GHz. We plot

the angular and the temperature dependence of LN crystal

linewidth for quantum transitions. We studied the angular

dependence of linewidths at two different central transitions:

+1/2 ↔ −1/2 and +3/2 ↔ −3/2. The linewidths in the ca
and ab planes are shown in Figs. 1 and 2, respectively. We

see from Fig. 3 that the linewidths increase monotonically

as the temperature increases, and that the linewidths are

almost constant in the high-temperature regime. One of

the remarkable features of the +3/2 ↔ −3/2 transition
shown by the ESRLW of LN crystals is that around a

certain temperature, which we shall denote by Tch, a
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Ô

P+−Ô=
Ô+S−S

σ+( )
+S−S

-------------------σ+

P+−

2

ω
R+S−S

σ+( )
+S−S

-------------------–

L 1 G
Q

ω( )Q+−L+{ }
R+S−S

σ+( )
+S−S

-------------------σ+

+S−S

σ+( )
+S−S

------------------------------------------------------------------------------------------=1–
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change in the behavior of the linewidth occurs. It is clear

from this feature that there are two regimes in the

temperature dependence of the ESRLW: (i) a high-temperature

regime in which a slow increase in the linewidth is

observed with increasing temperature and (ii) a low-

temperature regime in which a sudden increase in the

linewidth is observed. The temperature, Tch at which this

change occurs seems to be approximately 30 K. Thus, we

attribute this feature to the electric dipole interactions of

Cr3+ ions.

3. Summary

In summary, using numerical calculations, we calculated

the ESRLS function for n=1 and 2. The ESRLS of a Cr3+

ferroelectric LN material was studied as a function of the

temperature and the angle at a frequency of v = 9.27 GHz

(X-band) in the presence of external microwave radiation.

The temperature and the angular dependence of the ESRLWs

are obtained with the POT developed by Argyres and

Sigel. It is easier to obtain the linewidth using this method

than using other techniques because it can be obtained

directly using the POT, and the approximation L → Ld is

not needed. In the ca plane, the linewidths show a strong

angular dependence, whereas in the ab plane, they are

independent of the angle. This result implies that the

resonance center has an axial symmetry along the c −
axis, and that Cr3+ ions are at the sites of axial symmetry,

the site of the Li atom, or the site of the Nb atom. From

the temperature dependence of the linewidths shown, it

can be seen that the linewidths increase as the temperatures

increase with external radiation. This result implies that

the scattering effect increases with increasing temperature.

Thus, the present method can be considered to be more

convenient to explain the scattering mechanism as in the

case of other optical resonant systems.
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Appendix

For θ = 0o, the energy eigenvalues are readily obtained as

(A1)

ε 3/2± =
3

2
---gμBB± +D

ε 1/2± =
1

2
---gμBB± D–

Fig. 1. The polar angle dependence of the linewidths of chro-

mium-doped lithium niobate for transitions +1/2 ↔ −1/2 and

+3/2 ↔ −3/2 in ca-plane.

Fig. 2. The azimuthal angle dependence of the linewidths of

chromium-doped lithium niobate for transitions +1/2 ↔ −1/2

and +3/2 ↔ −3/2 in ab-plane.

Fig. 3. The temperature dependence of the linewidths of chro-

mium-doped lithium niobate for transitions +1/2 ↔ −1/2  and

+3/2 ↔ −3/2 at a frequency of v = 9.27 GHz.
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for θ = 90o and ϕ = 0o, the eigenvalues are also analytically

calcuable

(A2)

resonance conditions of ESR transitions are, consequently,

as below at θ = 0o,

↔  ; hv = 3gμBB, ↔  ; hv = gμBB

↔  ; hv = 2gμBB + 2D, 

↔  ; hv = −gμBB + 2D (A3)

and at θ = 90 and ϕ = 0o,

↔  ; hv = gμBB +

−

↔  ; hv = gμBB −

+ (A4)

The lowest order approximation for n=1 and 2 is given

as follows

(A5)

(A6)
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