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This paper presents a new self-adjoint material sensitivity formulation for optimal designs and inverse prob-

lems in the high frequency domain. The proposed method is based on the continuum approach using the aug-

mented Lagrangian method. Using the self-adjoint formulation, there is no need to solve the adjoint system

additionally when the goal function is a function of the S-parameter. In addition, the algorithm is more general

than most previous approaches because it is independent of specific analysis methods or gridding techniques,

thereby enabling the use of commercial EM simulators and various custom solvers. For verification, the

method was applied to the several numerical examples of dielectric material reconstruction problems in the

high frequency domain, and the results were compared with those calculated using the conventional method.
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1. Introduction

Since the early 1990s, sensitivity analysis using the

adjoint variable method (AVM) has been used widely for

electromagnetic optimal designs and inverse problems in

the low frequency domain [1-4]. However, in the high

frequency domain, most sensitivity analyses of electro-

magnetic problems have been based on analytic sensi-

tivity calculations with a small number of design para-

meters [5, 6].

Recently, increasing effort has been made to introduce

AVM to optimization and inverse problems in the high

frequency domain. AVM allows rapid and efficient calcu-

lations of the sensitivity when there are a large number of

design parameters. This makes it particularly useful for

high-resolution inverse problems, where stochastic methods,

such as genetic algorithms, particle swarm optimization

(PSO), etc., are computationally prohibitive [7]. Previous

studies gave a few examples, where a dielectric wave-

guide filter [8] and microstrip low-pass filter (LPF) with a

defected ground structure [9] were optimized utilizing the

AVM.

The essence of the AVM is the construction of an

adjoint system using an adjoint source, which is obtained

by differentiating the goal function with respect to the

state variables (electric or magnetic field). The normal

procedure for the AVM is to solve this adjoint system and

obtain adjoint variables that are used in the sensitivity

equation along with the solution of the primary system.

The AVM already has a huge advantage over the finite-

difference method (FDM), where the system must be

solved np (number of design parameters) times because

the entire sensitivity vector can be calculated with only

one additional solving of the adjoint system. Moreover,

since the adjoint system is often interpreted as a dual

system of the primary system and has the same charac-

teristics as the primary one except for the source term

(excitation), it can be solved with less computational burden

than the primary one when a custom solver, such as LU

decomposition, is used [1].

Many studies have been carried out to remove this

additional step and calculate the adjoint variable directly

from the state variable solution of the primary system. In

the low-frequency domain, using the self-energy formu-

lation derived from the mutual energy, the sensitivity can

be calculated from a solution of the primary system alone

if the objective function is defined in terms of the self

flux-linkage in the source coil [2]. With high frequency

systems, Nikolova et al. presented a time-domain formu-
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lation for the self-adjoint S-parameter sensitivity with re-

spect to the material interface and boundary interface in

structured grids based on a discrete approach that does

not require a solution of the adjoint system [10]. Recently,

they expanded their approach to the frequency-domain

formulation [11]. However, their formulation is based on

differentiating the finite-difference frequency-domain (FDFD)

system matrices and regular grids, where the sensitivity

solver is generated on its own. Naturally, it is most suited

for problems that are already discretized with structured

grids.

This paper proposes a new, more general frequency-

domain self-adjoint formula for the S-parameter sensiti-

vity calculation with respect to the material properties.

This method is based on recently derived continuum

sensitivity analysis for high frequency systems, which

employs the direct differentiation of the continuous EM

governing equation before discretization. This approach is

independent of the specific analysis method or gridding

technique, and commercial EM simulators as well as

custom solvers can be used for optimization and inverse

problems. The proposed method was applied to the several

numerical examples of dielectric material reconstruction

problems inside a parallel plate waveguide to assess its

feasibility and effectiveness.

2. Self-Adjoint Material Sensitivity 
Formulation

2.1. General material sensitivity formulation based on

continuum approach

This section reviews the general material sensitivity

formulation for high frequency electromagnetic systems.

Fig. 1 shows an exemplary 2-port system (rectangular

waveguide) with a dielectric discontinuity inside analysis

domain Ω. Ports 1 and 2 are defined on boundaries Γ1 and

Γ2.

The scattering parameters (S-parameters) are defined in

relation to the incident and reflected fields at the ports

[12]. For example, S11 can be defined as

(1)

where , , and  are the incident, reflected,

and total magnetic fields at port 1, respectively. S11 is a

linear function of the total magnetic field  at port 1

because the incident field  is a known vector. For

simplicity, the total magnetic field Htot is written without

the superscript as H from now on.

Assume that an objective function O is a function of

S11. Since S11 is a function of H on Γ1, as shown in (1), O

can be defined on boundary Γ1 as follows:

(2)

where g is a scalar function of H, and p is a system

parameter vector that controls the permittivity ε or perme-

ability μ distribution of the system. In the time-harmonic

case, the governing equation is given by the vector wave

equation for H as

(3)

where k0 is the wavenumber in free space. On Γ1, where

incident field is imposed, mixed boundary condition should

be defined, which may be expressed as [13],

(4)

where  is a unit vector pointing outward normal to the

boundary Γ1, γh is a known parameter and V denotes a

known vector with a magnitude proportional to that of the

incident field .

The augmented Lagrangian method was used to deduce

the sensitivity formula [4]. First, the augmented objective

function  was developed by adding the variational form

of the vector wave equation (3) to (2) as

λ · (5)

where λ is an arbitrary Lagrange multiplier vector. To

simplify the final form of the sensitivity equation, a speci-

fic condition was imposed on λ later in the derivation,

which allows λ to be interpreted as the adjoint variable

vector. Applying the first vector Green’s theorem to (5),

we obtain

( ×λ) · − λ ·H]dΩ

  λ · . (6)

The only nonzero contribution of the second surface

integral comes from Γ1. Substituting (4) into (6), produces

( ×λ) · − λ ·H]dΩ

  ×λ) · +λ·V]dΓ. (7)
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∫ [γh(n̂ n̂ H×( )Fig. 1. Rectangular waveguide with a dielectric discontinuity.
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By taking the variation of both sides of (7) with respect

to small changes, δp, in the system parameters, the first

variation of the augmented objective function δ  can be

developed as follows:

 

 . (8)

Using the notations  and ,

(8) can be reduced to,

 (9)

where  is an arbitrary vector that corresponds to the first

variation of the magnetic field. The following condition

was imposed on the Lagrange multiplier vector λ to

simplify the final form of the sensitivity:

(10)

which can be interpreted as a variational form of the

adjoint system. A comparison of (10) with the second and

third term on the right-hand side of (7) shows that the

only difference between the primary and adjoint system is

the source term (V for primary system and gH for adjoint

one) on the mixed boundary Γ1. Therefore, the adjoint

system can be solved by modifying the source of the

primary system from V to gH. Substituting (10) into (9),

and dividing both sides with δp, the material sensitivity

formula in high frequency system can be derived as

follows:

. (11)

In summary, the material sensitivity of the augmented

objective function  with respect to the system parameter

vector p can be calculated in the following steps:

(a) Solve the original (primary) electromagnetic system

(3) and obtain a field solution H.

(b) Calculate the adjoint source .

(c) Solve the adjoint system (10) with the adjoint source

gH calculated in step (b), and obtain the adjoint variable

vector λ.

(d) Substitute H and λ into (11) and calculate the

sensitivity vector .

2.2. Self-adjoint formulation for inverse problems

In this section, based on the general material sensitivity

formulation of section 2.1, the self-adjoint formulation for

the material sensitivity is derived for the specific form of

the objective function used in the inverse problems. The

aim of the inverse problem can be defined by setting the

function g(H) in (1) as

(12)

where S0 is the target value of the S-parameter. In case of

real inverse problems, S0 can be obtained by measure-

ments from the actual model. For numerical inverse pro-

blems, S0 can be obtained by calculating the numerical

target model. Using the chain rule, the adjoint source

 for the adjoint system (10) is then given by,

. (13)

where  can be calculated from (1).

From (13), the adjoint source vector gH can be assem-

bled by multiplying the primary source vector V by a

constant coefficient because S11 is a linear function of H

on Γ1, as mentioned in section 2.1. Therefore, from the

linearity of the system equation, the adjoint field λ can be

calculated directly without needing to solve the adjoint

system by dividing the primary solution vector H by the

magnitude of V, then multiplying the result by the magni-

tude of gH.

Summarizing the above formulation, the procedure to

calculate the self-adjoint material sensitivity is as follows:

(a) Solve the primary system and obtain the field

solution vector H.

(b) For a given goal function (12), calculate the adjoint

source term gH using (13).

(c) Obtain the adjoint field λ by multiplying H by

. 

(d) Calculate the sensitivity vector  using (11).

From the above procedures, the material sensitivity can

be calculated using only small overhead codes dealing

with steps (b)~(d). For step (a), commercial EM simu-

lators and custom solvers can be used because only the

primary solution H is needed for the sensitivity calcu-

lation, and no differentiation of the primary system matrix

is necessary. Because the adjoint variable vector λ can be

obtained directly from H in step (c), the computation time

for sensitivity can be decreased compared to the general

O
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material sensitivity calculation steps shown in section 2.1.

3. Numerical Example

The proposed method was applied to the several recon-

struction problems of the dielectric material distribution

inside a parallel plate waveguide.

3.1. Description of the numerical models

The design region was located 30 mm away from the

left and right ports to allow for sufficient homogeneous

waveguide regions near ports 1 and 2. The S-parameter

target value S0 was calculated at 27 frequency points

between 0.3~3 GHz with frequency gap of 0.3 GHz. Four

numerical models shown in Fig. 2a~5a were tested (model

1~model 4). Each model was solved with two different

grids. Grid 1 (coarse grid) has a 2 mm × 2 mm resolution,

and the total number of design cells is 52 × 16=832. Grid

2 (fine grid) has a 1 mm × 1 mm resolution, and 3328

total cells. Note that the use of the stochastic method will

be very time-consuming for grid 2. The design variable is

the normalized material density in each unit cell, which in

turn controls the permittivity in that particular cell. In this

paper, a modified version of the density method was used

to define the relationship between the relative permittivity

εr  and design parameter [3]: 

(10)

where pi is the normalized density of the ith unit cell

( ), and εmin and εmax are the minimum and

maximum value of the relative permittivity distribution

available in the design region, respectively.

3.2. Results and discussion

Figs. 2~5 show the reconstructed dielectric distribution.

For models 1 and 2, a precise reconstruction of the target

distribution was achieved for grids 1 and 2. For models 3

and 4, the algorithm found the approximate location of

the dielectric but the precise boundary or detailed di-

electric distribution of the target model could not be

replicated. In addition, different distributions were obtain-

εr=εmin εmax/εmin( )
p

i

0 pi 1≤ ≤

Fig. 2. Dielectric distribution for model 1. (a) Target. (b)

Reconstructed (grid 1, 500 iterations). (c) Reconstructed (grid

2, 500 iterations).

Fig. 3. Dielectric distribution for model 2. (a) Target. (b)

Reconstructed (grid 1, 2000 iterations). (c) Reconstructed (grid

2, 2000 iterations).

Fig. 4. Dielectric distribution for model 3. (a) Target. (b)

Reconstructed (grid 1, 1000 iterations). (c) Reconstructed (grid

2, 1000 iterations).
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ed from grids 1 and 2. However, the S-parameter plot

(Fig. 6) shows that there is good agreement between the

S-parameter pattern of the target distribution and the

reconstructed one even for models 3 and 4. To improve

the result, following suggestions are given: 

(a) From Fig. 2 and 3b, the regions close to port 1 have

a relatively good reconstruction. However, the ones far

away from port 1 have poor results. This situation can be

improved by including the S21, S22, and S12 terms in the

goal function,

(b) Although higher modes of reflected and transmitted

fields are considered in the analysis of the primary system,

only the dominant mode of the incident field is consider-

ed at port 1. For discontinuities like model 3 and 4, which

do not span the entire height of the waveguide, this will

provide insufficient information about those discontinui-

ties. The higher mode incident fields, as well as the

dominant mode ones, will provide more information on

those discontinuities from the reflected and transmitted

fields at the port.

The sensitivity vectors  calculated using the

proposed self-adjoint method agree well with those cal-

culated using the conventional adjoint method that solves

an additional adjoint equation. In other words, all compo-

nents of the sensitivity vectors obtained from the two

methods match precisely up to 7 significant figures, as

dO/dp

Fig. 5. Dielectric distribution for model 4. (a) Target. (b)

Reconstructed (grid 1, 600 iterations). (c) Reconstructed (grid

2, 600 iterations).

Fig. 6. S11 magnitude plot of the target and reconstructed

models.

Fig. 7. Comparison of the sensitivity obtained by the self-

adjoint and conventional adjoint method for model 4, grid 1, at

the first iteration. The x-axis represents the index number of

each finite element. Two finite elements form one design cell.

Table 1. Comparison of the computation time.

Model Grid

Self-adjoint 

sensitivity (sec)

(does not solve 

adjoint system)

Conventional adjoint 

sensitivity (sec)

(solve adjoint system)

Decrease in 

computation 

time (%)

1
1 232.82 262.19 11.20

2 1215.15 1342.19 9.47

2
1 233.28 262.66 11.19

2 1217.19 1340.31 9.19

3
1 232.81 262.19 11.21

2 1214.53 1336.41 9.12

4
1 234.68 277.03 15.28

2 1222.34 1341.56 8.89

Intel Core(TM)2 Duo CPU @3.00 GHz with 2.00 GB RAM was used

for the calculation. Computation time is the time required to reach 100

iterations for each model and grid.
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shown in Fig. 7. 

Table 1 compares the computation time of the self-

adjoint method and conventional adjoint method. The

proposed method showed an approximate 10% decrease

in computation time because it does not solve an addi-

tional adjoint system. However, the decrease is < 50%

because the direct custom solver with a LU decom-

position was used for the conventional adjoint method,

which requires only forward and backward substitution to

obtain the solution of the adjoint system. If commercial

EM simulators without the LU decomposition technique

are used, it is expected that the efficiency of the self-

adjoint method will increase even further.

4. Conclusion

This paper proposed a novel self-adjoint material sensi-

tivity formulation for a high frequency electromagnetic

system that is independent of the specific analysis method

or gridding technique. The proposed method saves approxi-

mately 10% of the total computation time by skipping the

adjoint system analysis, while providing the same sensi-

tivity information as the conventional adjoint method.

Further formulations of the S-parameter sensitivity with

respect to the PEC boundary interface and material inter-

face utilizing a commercial EM simulator that can be

applied to the wide range of high frequency optimization

and inverse problems are currently underway.
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