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Spin-orbit coupling (SOC) is a source of strong spin dephasing in two- and three-dimensional semiconducting

systems. We report that spin dephasing in a two-dimensional electron gas can be suppressed by introducing a

quantum point contact. Surprisingly, this suppression was not limited to the vicinity of the contact but extended

to the entire two-dimensional electron gas. This facilitates the electrical control of the spin degree of freedom in

a two-dimensional electron gas through spin-orbit coupling.
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1. Introduction

One of main aims of semiconductor spintronics [1] is to

utilize the spin-orbit coupling to control the electron spin

degree of freedom [2-4]. In this respect, the Rashba spin-

orbit (RSO) coupling [5] arising in a two-dimensional

electron gas (2DEG) plays an important role because its

strength can be modulated electrically [6]. This opens the

possibility of achieving electrical control of the spin

degree of freedom.

The RSO coupling controls the spin by generating an

effective magnetic field, around which the spins precess.

However, unlike conventional magnetic fields, this effec-

tive magnetic field varies with the momentum of elec-

trons, which causes the electron spins to precess around

different axes depending on their momenta. The angle

average over the momentum direction then results in spin

dephasing [7]. This RSO coupling-induced spin dephas-

ing is strong even in a ballistic 2DEG [8, 9]. Therefore, it

is important to suppress this adverse effect of RSO coup-

ling to achieve efficient electrical control of the spin

degree of freedom. 

A narrow 2DEG with only one transport channel is an

ideal environment for spin transport because the RSO

coupling-induced spin dephasing is quenched [2, 10].

However, such a single-channel system is rather difficult

to realize in experiments. For example, the width of the

system needs to be smaller than 10 nm for a 2DEG with a

Fermi wavelength of 10 nm [8]. The other way to produce

a single-channel system is to introduce a quantum point

contact (QPC) in a 2DEG. It is well known that the

number of transport channels decreases via a QPC when

charge conductance is observed [11]. For spintronic ap-

plications, the injection and detection of the spin-polari-

zed current was achieved experimentally using a QPC and

external magnetic field [12]. Furthermore, experimental

evidence suggests that the spin-orbit coupling caused by

the highly asymmetric lateral potential in the QPC can

generate a spin-polarized current [13]. However, there are

no reports of the RSO coupling-induced spin precession

of the spin-polarized current through the QPC, which

would be due to the decrease in the number of channels.

This paper reports that the RSO coupling-induced spin

dephasing can be strongly suppressed in a 2DEG with a

QPC (Fig. 1). Transport through the QPC becomes one-

dimensional (1D) when its channel width d(x) is com-

parable to the Fermi wave length λF in the 2DEG. A

trivial effect of the QPC is the suppression of the spin

dephasing in the vicinity of the QPC. This is because in a

1D wire, the electron motion perpendicular to the wire

axis is strongly quenched, preventing the angle average

over the momentum direction. In addition to this trivial

effect, the QPC causes a far reaching nonlocal effect; the

spin dephasing is suppressed not only in the vicinity of

the QPC but also in the entire region of the 2DEG. This

paper demonstrates this in the ballistic regime (free from
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impurities) and then in the weakly diffusive regime. It is

believed that this method will facilitate efficient electrical

control of the spin degree of freedom in a 2DEG via the

RSO coupling.

2. Theoretical Model 

We first consider a ballistic 2DEG subject to the RSO

coupling, which is described (Fig. 1) by the Hamiltonian

H,

 (1)

where m* is the effective mass of an electron, σ = (σx, σy,

σz) is the Pauli spin operator. Here, the first, second, third

and fourth terms represent respectively, the kinetic energy,

the RSO coupling, the hard wall potential at the side

edges ( y = ±w/2) of the 2DEG, and hard wall potential

that generates the QPC in the range |x | < LQPC/2, whose

width is d(x) [14].

To illustrate the main physics, the RSO coupling strength

α(x) was chosen to have a nonzero value α0 only within a

finite range (|x| < L/2) and disappear elsewhere [15]. Hence,

the spin becomes a conserved quantum number in the left

(x < −L/2) and right (x > L/2) “electrodes”. The degree of

spin dephasing caused within the range |x| < L/2 can then

be obtained from the spin-resolved conductance from one

electrode to the other.

3. Results and Discussion

Fig. 2(a) shows the normalized spin-resolved conduc-

tance g+x,+x(α0) ≡ G+x,+x(α0)/G+x,+x(α0=0) as a function of

α0, where g+x,+x(α0) = (e2/h)Σi,j |ti,j
+x,+x |2 was calculated

within the Landauer-Büttiker formalism [16, 17]. Here

ti,j
+n,+n

 denotes the transmission amplitude from the orbital

channel j on the left electrode with spin pointing in the

+n-direction to the orbital channel i on the right electrode

with spin pointing in the +n-direction. The normalized

conductance g+x,+x(α0) amounts to the probability that an

electron, whose spin is initially aligned along the +x-

direction in the left electrode, arrives the right electrode

with its spin aligned along the +x-direction. The sinusoi-

dal oscillation of g+x,+x(α0) in Fig. 2(a) is due to the spin

precession caused by the RSO coupling. In the absence of

the QPC (VQPC=0 and d(0)=w), the oscillation amplitude

decays fast with increasing α0. Following the abnormal

behavior near α0~10×10−12 eVm, which is a trace of the

beating phenomenon [18], the g+x,+x(α0) at both peaks and

dips converge towards 0.5, representing a strong spin

dephasing effect of the RSO coupling.

Fig. 2(a) also shows the results in the presence of the

QPC. In Fig. 2(a), NQPC ≡ Int[d(0)/(λF/2)] is a measure of

the width of the QPC and represents the upper bound of

g+x,+x(α0)/(e
2/h) imposed by the conductance quantization

effect of the QPC [17, 19]. Here, Int[q] represents the

largest integer not exceeding q. It should be noted that the

QPC enhances the oscillation amplitude of g+x,+x(α0) and

the enhancement increases with decreasing NQPC.
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Fig. 1. Schematic diagram of a two-dimensional electron gas

with a quantum point contact.

Fig. 2. (a) The normalized spin-resolved conductance g+x,+x

(α0) ≡ G+x,+x(α0)/G+x,+x(α0=0) in the ballistic 2DEG as a func-

tion of á0 in the presence or absence of the QPC. w/(λF/

2)=20.1 in this plot. (b,c) The SOR [Eq. (2)] as a function of

w/(λF/2) in the presence (NQPC=1) or absence of the QPC. The

SOR was evaluated in the range 4×10−12 eVm < α0 < 9×10−12

eVm [6, 20] for (b) and 45×10−12 eVm < α0 < 50×10−12 eVm

[21] for (c), respectively. In the numerical calculations,

m*=0.04melectron, λF=193A, L=176 λF, LQPC=17 λF. Here melectron

is the free electron mass.
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As a measure of the spin coherence, we introduce the

spin-orbit resistance (SOR), which is defined as

 SOR ≡ (2)

where Gmax and Gmin represent the local maximum and

minimum values of G+x,+x(α0), respectively. Fig. 2(b) and

(c) were obtained by evaluating the maximum and mini-

mum in the range 4×10−12 eVm < α0 < 9×10−12 eVm [6,

20] and by evaluating them in the range 45×10−12 eVm <

α0 < 50×10−12 eVm, respectively [21]. Many experiments

[6, 20, 21] reported α0 in these ranges. Both in Figs. 2(b)

and (c), the SOR was plotted as a function of w/(λF/2),

which is a measure of the width of the 2DEG and whose

integer part Int[w/(λF/2)] represents the upper bound [17]

of G+x,+x(α0)/(e
2/h) imposed by the finite width w of the

2DEG. In the absence of the QPC, the SOR decays rapid-

ly with increasing w/(λF/2). On the other hand, the SOR

does not exhibit such decay in the presence of the QPC.

Instead it appears to saturate after initial fluctuations that

originated from relative large variations in the QPC shape

as w/(λF/2) changes in its smaller ranges. This demon-

strates that spin dephasing can be suppressed considerably

by the QPC.

The following discusses the origin of the spin dephas-

ing suppression. Semiclassicaly, the total spin dephasing

probability is the sum of the spin dephasing probabilities

in the QPC region (|x|<LQPC/2) and outside regions (LQPC/2

<|x |< L/2). In this semiclassical picture, the QPC cannot

enhance the spin coherence by more than 22% because

LQPC/L=0.22. In contrast, Figs. 2(b) and (c) show much

more significant enhancement of the spin coherence.

Therefore, this semiclassical picture fails.

A nontrivial quantum effect of the QPC was recently

demonstrated by Eto et al. [19]. It is well known that the

RSO coupling may induce the anti-crossing between

energy bands with different spin directions. They demon-

strated that the anti-crossing near the QPC might result in

spin filtering. However, this spin filtering effect does not

explain the result in Fig. 2. To begin with, this mechanism

can only function when the anti-crossing of the local

energy bands occurs near the QPC. For NQPC=1, this

requires m*
α0/

2kF to be larger than ~0.1 according to

the estimation in Ref. [19]. This requirement is satisfied

only for sufficiently large α0>30×10−12 eVm while the

SOR enhancement by the QPC occurs for a much smaller

α0. Secondly and more importantly, this spin filtering

mechanism polarizes the spin along the eigen-spin direc-

tion of the spin-orbit coupling, which is along the ±y-

direction. Therefore, this mechanism actually suppresses

the spin precession within the xz-plane and reduces the

oscillation amplitude of g+x,+x(α0). For these two reasons,

it is concluded that this mechanism cannot explain the

result in Fig. 2 [22].

The behaviors of eigen-transport channels were examin-

ed to gain insight into the origin of the spin dephasing

suppression [11]. The concept of the eigen-transport cha-

nnels is a very successful tool for understanding various

mesoscopic phenomena, such as the conductance quanti-

zation [17, 23], universal conductance fluctuations [24]

and shot noise [25]. For the structure in Fig. 1, they are

defined as eigenvectors of the matrix t†t, where the matrix

elements of t are given by ti,j
s,+x (s=+x, −x) and contain

all information about the electrons injected with +x spin.

For α0=0, the QPC introduces a small number of eigen-

transport channels with transmission probabilities (eigen-

values of t†t) close to one, while the remaining eigen-

transport channels have much smaller transmission prob-

abilities close to zero [11]. 

Fig. 3(a) shows the three largest eigenvalues of t†t as a

function of α0 for NQPC=1. Although the separation bet-

ween eigen-transport channels with transmission prob-

abilities close to one and zero becomes less clear with

increasing α0, one particular eigen-transport channel

(channel 1) is still dominant over the others. Fig. 3(b), (c)

Gmax Gmin–

Gmin

--------------------------- 100%×

h

Fig. 3. (a) The transmission probabilities (eigenvalues of t†t)

of the eigen-transport channels 1, 2, and 3 for NQPC=1 and w/

(λF/2)=20.1. Other eigen-transport channels (not shown) have

smaller transmission probabilities. The conditional probabili-

ties of the eigen-transport channels 1(b), 2(c), and 3(d) have

spin +x (solid lines) or −x (dashed lines). See the text for more

details.
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and (d) show the conditional probabilities that an electron

has its spin pointing in the +x (solid lines) and −x-

directions (dashed lines) when it arrives at the right

electrode. Note that the conditional probability of eigen-

transport channel 3 shows irregular oscillations for α0>

13×10−12 eVm, indicating the strong influence of the spin

dephasing in the 2DEG. Interestingly, all such eigen-

transport channels with irregular oscillations have small

transmission probabilities. In contrast, eigen-transport

channels 1 and 2, which are the best and second best

transmission channels, show regular oscillations with large

amplitudes. However, to be more precise, the oscillation

of the eigen-transport channel 2 is not strictly regular

either. A closer look shows an incomplete oscillation near

α0=1.2×10−12 eVm. Because of this, the conditional prob-

ability oscillation of eigen-transport channel 2 is 180o out

of phase from that of eigen-transport channel 1 and reduces

the oscillation amplitude of g+x,+x(α0). The degree of the

reduction depends on the relative magnitude of the trans-

mission probabilities of the two eigen-transport channels.

Moreover, the oscillation amplitude of g+x,+x(α0) can remain

large because the transmission probability for eigen-trans-

port channel 1 is much larger than that for eigen-transport

channel 2. Therefore, the QPC allows a good transmission

for an eigen-transport channel, which is the least affected

by the spin dephasing, and suppresses the transmissions

from the eigen-transport channels affected significantly by

the spin dephasing. This selective transmission obviously

suppresses the spin dephasing as well as the entanglement

between the spin and orbital degrees of freedom, which is

an important source of the spin dephasing [8]. Recalling

that the electron motion near the QPC is 1D-like, the best

transmission channel also has strong 1D-character [Fig. 3

(b)]. In addition, this can explain why the spin dephasing

suppression is not limited to the vicinity of the QPC

because the transmission amplitude t depends on the

structure of the entire system.

The effects of the QPC in the weakly diffusive regime

were also examined. In the numerical conductance calcu-

lation, strongly repulsive scatterers are introduced at Nimp

randomly selected sites in the 2DEG (LQPC/2<|x|<L/2) to

study the scattering effects. Fig. 4 shows the SOR as a

function of Nimp for a system with the QPC (NQPC=1) and

w/(λF/2)=20.1. Although the SOR decreases with Nimp, it

remains, up to Nimp ~ 30, more than one order of magni-

tude higher than the corresponding value in the absence

of the QPC. Moreover, even for Nimp ~ 120, it still remains

significantly larger than the corresponding value in the

absence of the QPC. For Nimp=120, the mean free path l

is approximately one third of L [26]. Therefore, even in

the weakly diffusive regime, the presence of the QPC

enhances the SOR considerably. As a passing remark, it

should be noted that each data point in Fig. 4 was obtain-

ed for one particular random configuration of scatterers.

To check if the results are generic, a few other configu-

rations were tested and qualitatively similar results were

obtained.

Previously it was reported [3, 27] that when an electron

is subject to both the RSO coupling and the Dresselhaus

spin-orbit (DSO) coupling [28], the spin dephasing can be

suppressed by exploiting the competition of the two types

of the spin-orbit coupling. Although this suppression

mechanism is robust against diffusive scattering, it works

only at a special value of α0 [3, 27]. In contrast, the

suppression by the QPC works over a wide range of α 0

provided l/L ≥ 0.3. In this sense, these two mechanisms

are complementary. In addition, the suppression by the

QPC is not sensitive to the detailed forms of the spin-

orbit coupling. As a test, it was confirmed that similar

suppression persists when the RSO coupling coexists with

the linear DSO coupling for the crystal direction [110].

The introduction of the QPC may cause some spatial

changes in α0 near the QPC, and the gate voltage, which

is intended to control α0, might also affect the width d(x)

of the QPC. However these complications do not deterio-

rate the spin dephasing suppression significantly provided

the spatial variation of α0 does not cause significant

reflection of electrons [15] and the change in d(x) does

not alter NQPC.

4. Summary

The introduction of a QPC can strongly suppress the

spin dephasing in a 2DEG. The orders of magnitude

Fig. 4. The SOR [Eq. (2)] as a function of the number of scat-

terers Nimp for a system with w/(λF/2)=20.1. The SOR in (a)

and (b) are evaluated in the α0 ranges used in Figs. 2(b) and

(c), respectively.
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enhancement of the SOR [Eq. (2)] can be obtained using

this method. It is believed that this result will facilitate the

electrical control of the spin degree of freedom in a

2DEG, and when combined with recent progresses in spin

injection and detection [29] it can make the realization of

the spin transistor [2] feasible 
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