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The convergence behavior of the all-electron full-potential linearized augmented plane-wave (FLAPW) method

with the explicit orthogonalization (XO) scheme is tested on ferromagnetic bulk body-centered-cubic Fe. Apply-

ing a commonly used criterion relating the plane-wave and angular momentum cutoffs, lmax = RMTKmax, where

RMT is the muffin-tin (MT) sphere radius and Kmax is the plane-wave cutoff for the basis − the total energy is

converged and stable for KmaxRMT = 10. The total energy convergence dependence on the star-function cutoff,

Gmax, is minimal and so a Gmax of 3Kmax or a large enough Gmax is a reasonable choice. We demonstrate that the

convergence with respect to lmax or a fixed large enough Gmax and Kmax are independent, and that Kmax provides

a better measure of the convergence than RMTKmax. The dependence of the total energy on RMT is shown to be

small if the core states are treated equivalently, and that the XO scheme is able to treat systems with signifi-

cantly smaller RMT than the standard LAPW method. For converged systems, the calculated lattice parameter,

bulk modulus, and magnetic moments are in excellent agreement with the experimental values.

Keywords : first-principles calculation, FLAPW method, convergence, explicit orthogonalization (XO), ferromagnetism,

bcc Fe

1. Introduction

First-principles calculations based on density functional

theory (DFT) [1], although are non-trivial, have grown

into an important method for describing materials in con-

densed matter physics, chemistry, and materials science.

DFT can give detailed predictions of the atomic, electronic,

and magnetic properties of materials and so, combined

with the corresponding experiments, has become a power-

ful tool [2].

The augmented plane-wave (APW) method [3] was the

first approach to combine atomic-like functions and a plane-

wave basis set in order to automatically satisfy the Bloch

symmetry on the one hand and to avoid the difficulties of

the Wigner-Seitz cellular method [4] on the Wigner-Seitz

cell boundary on the other. Korringa, Kohn, and Rostoker

[5] suggested another modified method, the KKR method,

to the Wigner-Seitz cellular method that employed phase-

shifted spherical waves in the interstitial region instead of

the plane-waves of the APW method. The difficulty in the

APW and KKR methods appears in the resulting secular

matrix which depends non-linearly on energy. This difficulty

was resolved by the introduction of the linearization of

the APW and KKR basis sets, which developed to the

linearized APW (LAPW) and the linearized muffin-tin

orbital (LMTO) methods, respectively [6, 7]. Due to the

flexibility and the accuracy of the linearization method,

the full-potential linearized augmented plane-wave (FLAPW)

method was developed to solve the total-energy problem in

density functional theory for film [8, 9] and bulk [10]

materials without any shape approximations on the valence

electrons [11]. The FLAPW method is now considered to

be one of the most precise methods for solving the

electronic structure problems of crystalline solids.

The LAPW method for bulk systems separates space

into two regions, the muffin-tin (MT) sphere region (non-

overlapping atom centered spheres) and the remaining

interstitial (I) region. The representation of the basis func-

tions, charge densities, and potentials are different in the

two regions. The basis functions in the method are given

by
*Corresponding author: Tel: +82-54-279-9014

Fax: +82-54-279-9299, e-mail: igkim@postech.ac.kr



− 138 − A Convergence Test of the Full-potential Linearized Augmented Plane Wave (FLAPW) Method… − Seung-Woo Seo et al.

(1)

where kn ≡ k +Kn, Kn is a reciprocal lattice vector, Ω is

the unit cell volume, ul is solution of the (scalar relati-

vistic) radial Schrödinger equation in the spherically aver-

aged crystal potential at the linearization energy El, while

 is the derivative with respect to around the energy

parameter El. The coefficients A and B are determined by

the condition that the basis functions are continuous and

differentiable at the sphere boundary. There is a number

of numerical cutoffs and parameters in the method: the

number of plane waves in the basis set, determined by

Kmax; the MT radius RMT; the angular momentum expan-

sion lmax of the wave function in the sphere; and corre-

sponding expansions parameters Gmax and Lmax for the

charge and potentials. A crude rule of thumb [12] −

related to the expansion properties of the plane wave −

relates the lmax cutoff for the spherical harmonics to the

Kmax for the plane waves by lmax = RMTKmax. While apply-

ing this relationship has the advantage of decreasing the

number of independent parameters that needs to be

chosen, it is important to note that, contrary to what might

be inferred from common references [13], it does not

guarantee convergence nor is it even necessarily a parti-

cularly good choice.

As seen in Table 1, which summarizes the convergence

parameters collected mostly from the 21st century refer-

ences [14-39], many FLAPW users have, in fact, adopted

the convergence parameters of lmax = RMTKmax = 8, a choice

following from the work of Wei et al. [14], who found

that the choice of the lattice harmonics construction with

Lmax = 8 was sufficient for bulk tungsten; these authors

also used an angular momentum wave function cutoff of

lmax = 8. However, Freeman et al. [15] used the conver-

gence parameters lmax = RMTKmax = 10 for simple cubic Fe.

In addition, there are many examples of the mismatch

between lmax and RMTKmax as well [16-18, 20, 22, 23, 26,

27, 29-33, 38]. This diversity in the choice of conver-

gence parameters is due in part to the lack of published

systematic studies of the convergence parameters. In this

paper, we examined the choice of convergence parameters

which are widely used in the LAPW community. In Sec. 2,

we briefly describe the method of convergence tests what

we applied here. In Sec. 3, the numerical convergence of

the FLAPW method are presented and discussed. Finally,

a conclusion is given in Sec. 4. 

2. Method for Convergence Test

The body-centered-cubic (bcc) bulk Fe of the experi-

mental lattice constant of 5.4169 a.u. [40] was chosen as a

representative system for the convergence test. Fe is

located in the middle of the periodic table and shows

ferromagnetism. Because of the combination of localized

d-states and itinerant states, bcc Fe has long been consi-

dered a representative elemental material for testing first-

principles and ab initio methods.

The Kohn-Sham equations [41] were solved using the

FLAPW method. In order to check implementation depen-

dence, we performed the calculation with two implemen-

tations of the FLAPW method; FLAIR [2] developed by

the group of M. Weinert and the QMD-FLAPW package

[42] developed by the group of A. J. Freeman. It is found

that those two implementations give essentially the same

results within numerical errors influenced by the different

platform, i.e., the differences in the implemented numeri-

cal algorithms, the compilers (Intel FORTRAN or IBM

XL FORTRAN), the central processing units (Intel or

IBM POWER 5+), and the operating system (Linux or

IBM AIX). Exchange-correlation was treated using the

generalized gradient approximation (GGA) with the ex-

plicit form of Perdew, Burke, and Ernzerhof [43]. Core

electrons were treated fully relativistically, while valence
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Table 1. Collected references based on the choice of the convergence parameters in terms of RMTKmax and lmax of the FLAPW

method on bulk systems.

   lmax

RMTKmax 

7 8 9 10 11 12

6 − [16] − − − −

7 − [33] − [25, 26, 29] − −

8 [17] [19, 21, 28] [23] [22, 24, 27, 30, 31, 38] − [20]

[34, 35, 37]

9 − [32, 39] − − − −

10 − [18] − [15] − −

11 − [18] − − − −

12 − [18] − − − −
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states were treated scalar relativistically, without spin-orbit

coupling [44]. The explicit-orthogonalization (XO) scheme

for ensuring the orthogonality between the semicore and

valence states [2] was used throughout. Self-consistency

was assumed when the charge density and the spin

density differences were less than 10−5 electrons/a.u.3

The star-function cutoff, Gmax, which is used for descri-

bing the potential and density in the interstitial region, can

be chosen in a number of ways. The valence density can

be described strictly by a cutoff of 2Kmax, but because of

both the solution of Poisson equation [11] and exchange-

correlation, a larger value is required. In practice, for

values Gmax ~ 3Kmax or Gmax ~ 10−15 (2π/a), the results

are rather insensitive to changes in Gmax. Calculations

using both a fixed Gmax = 15 (2π/a) and Gmax = 3Kmax

were done, with similar results.

Integrations inside the Brillouin zone (BZ) were per-

formed by the improved tetrahedron method [45] on the n

× n × n Monkhorst-Pack mesh [46] with 3 ≤ n ≤ 21, and

also by a special points integration scheme. The choice of

the MT sphere radius of an element is often one of the

most difficult and is a major focus here. Hence, we varied

the MT sphere radius RMT from 1.9 to 2.3 a.u. The plane-

wave cutoff Kmax was varied by considering the relation,

lmax = RMTKmax for 6 ≤ lmax ≤ 12, and also by independently

varying Kmax. The lattice constant of bcc Fe was optimized

at each convergence parameter set by employing a seven-

point least-square fit to the several standard equation of

state [47-49], which also provides estimates of the bulk

modulus (B).

3. Result and Discussion

Since the self-consistent solution of the Kohn-Sham

equations is variational, i.e., gives an extremum of energy,

we investigate the convergence of the total energy. In Fig.

1 the total energy for RMT = 1.9 a.u. as a function of plane

wave cutoff is shown for different lmax. Basically, the

curves for the different lmax are indistinguishable, demon-

strating that in fact there is no direct relationship between

lmax and Kmax. It is true, however, that as RMTKmax gets

larger, lmax must increase otherwise the discontinuities of

the basis functions become appreciable. A choice of lmax =

8−10 is generally a reasonable choice. The choice of the

expansion for the charge and density should generally be

that Lmax ≥ lmax, but this choice is not particularly critical.

In Fig. 2, we present the convergence behavior of the

total energy for different MT radii, given both as a

function of RMTKmax and Kmax. In making comparisons the

results of different RMT, it is essential that the systems are

treated as similarly as possible. An issue that needs

special care is the treatment of the core states: They are

not strictly confined to the MT spheres and to solve for

them the potential must be extended beyond RMT; in these

plots, we apply the same algorithm for extending the

potential beyond ~1.9 a.u. for each of the different RMT

values.

The overall convergence as a function of RMTKmax (in

Fig. 2(b)) is similar for the different muffin-tin spheres,

albeit the larger spheres converge somewhat faster. From

this figure, using RMTKmax as a convergence parameter

appears to be a reasonable choice, and a value around 10

gives good results. Note, however, that it is Kmax that

directly determines the size of the basis, and that for a

given RMTKmax, the ratio of the basis size for two different

radii is ~(R1/R2)
3; for example, the basis for RMT = 1.9 a.u.

is ~1.8 times as large as the one for RMT = 2.3 a.u. This

suggests that the convergence is better for the larger

sphere, which is borne out by the upper plot which replots

the data in terms of Kmax (and hence the basis size)

Fig. 1. (a) Convergence of the total energy as a function of

Kmax (in units of 2π/a) for bcc Fe for RMT= 1.9 a.u. for lmax = 6,

8, 10, and 12. Energies are given in Hartree/atom relative to

the converged value. All the lines are overlapped into a single

line. (b) The energies on an expanded scale. Note that the

curves for lmax = 8, 10, and 12 still overlap on the mHartree/

atom scale. 
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directly. This behavior results from the fact that the

optimally adapted numerical radial functions describe a

larger fraction of the volume. In addition, use of Kmax is a

better idea of the computational cost-basis size and is

applicable to systems composed of different atoms with

intrinsically different atomic sizes.

In Table 2 we show the number of core electrons out-

side the MT sphere per spin, the corresponding lowest

eigenvalue at Γ of each spin relative to the Fermi level,

and the total energies for different RMT. The charge lost

from the core decreases rapidly with increasing RMT. The

positions of the lowest Γ1 eigenvalues remain essentially

constant, demonstrating that the converged calculated

physical properties are essentially independent of the

choice of RMT. The total energy is slightly lower for the

largest sphere, as expected if the numerical functions pro-

vide better variational freedom. The core leakage into the

interstitial for smaller RMT often leads to “ghost” states in

the standard LAPW approach because the assumed ortho-

gonality between the core and valence electrons breaks

down. The XO approach [2] used here avoids that pro-

blem, as would so-called “local orbitals.” Also shown (in

the lines labeled “Δ”) are the changes that occur when the

potentials for the core states are extended starting from

RMT as is usually done, and show how using different

(“hidden”) computational parameters need to be account-

ed for. As seen, there are systematic changes resulting

from the subtle changes in the potential for the core

states. The most noticeable effect is on the total energy,

with changes large enough to be physically significant if

naively taken at face value. This energy difference is due

to changes mainly in the core eigenvalues because of the

changed boundary conditions for the core states. The

procedure used above avoids this issue, as would a frozen

core approximation. However, the best, and most consistent,

procedure that allows for meaningful comparisons among

different calculations, is to simply pick a radius for each

atom and use that set of radii in all the calculations.

In Table 3, we summarize the calculated static physical

properties, i.e., equilibrium lattice parameter a (in units of

a.u.) and bulk modulus B (in units of GPa), for the case of

Kmax = 3.5, 4, and 5 (2π/a) and RMTKmax = 10 for the BZ

integration mesh of 17 × 17 × 17 that the a and B values

are converged well enough. Note that Kmax = 3.5 (2π/a)

case is hardly to say it is converged. The calculated equi-

librium lattice parameters for the Kmax = 5 (2π/a) or

RMTKmax = 10 are underestimated by less than 1% com-

pared with the experimental value [40]. It is an excellent

agreement with experiment if we consider the current

calculation is for zero Kelvin, while the experimental

value is obtained at a finite temperature.

We also found that the calculated B for Kmax = 4 and 5

(2π/a) or RMTKmax = 10 results differs by a few percent

Fig. 2. Convergence of the total energy for bcc Fe for different

MT radii RMT as a function of (a) Kmax (in units of 2π/a) and

(b) RMT Kmax. Energies are given in Hartree/atom relative to the

converged value.

Table 2. Calculated number of core electrons outside the MT

sphere of radius RMT per spin (lost-core), the lowest eigenvalue

Γ1 of each spin relative to the Fermi energy, and the total

energy. Energies are given in units Hartree. The lines marked

“Δ” correspond to the changes in the quantities when the

extrapolation for the core potential starts at RMT rather than at

1.9 a.u.

RMT

(a.u.)

Lost Core Eigenvalue Γ1 Total Energy

(Hartree)↑ ↓ ↑ ↓

1.9 0.0434 0.0459 −0.30352 −0.29771 −1272.81433

Δ − − − − 0.00000

2.0 0.0299 0.0318 −0.30371 −0.29792 −1272.81453

Δ −0.0009 −0.0007 −0.00033 −0.00031 0.00313

2.1 0.0205 0.0221 −0.30379 0.29801 −1272.81455

Δ −0.0012 −0.0008 −0.00048 −0.00049 0.00455

2.2 0.0142 0.0154 −0.30380 −0.29801 −1272.81459

Δ −0.0012 −0.0008 −0.00056 −0.00060 0.00537

2.3 0.0099 0.0107 −0.30372 −0.29794 −1272.81471

Δ −0.0011 −0.0007 −0.00064 −0.00068 0.00602
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from the experimental one [51]. This is remarkable improve-

ment compared to the previous results by Moruzzi and

Marcus [50] using the augmented-spherical-wave (ASW)

based on the local spin density approximation (LSDA).

The bulk modulus is defined by

, (2)

in the second derivative of energy with respect to volume

[52]. This implies that the bulk modulus is an indication

of the convexity of the total energy with respect to

volume change of a system. Because any direct numerical

derivative of any smooth function causes large roundoff

errors [53], one should be careful in the procedure for

obtaining B: The standard method is to calculate total

energy at several lattice parameters to fit into a standard

function of equation of states [47-49] and then perform

the corresponding analytic derivative on it. Denser sampling

points give better convergence in B calculation. A further

contribution is the discrete nature of the reciprocal lattice:

changes in lattice constant will cause different rings of K

vectors to cross the Kmax sphere, thereby changing the

number of basis functions, an effect that is more signifi-

cant for smaller Kmax. This effect is also more pronounced

for smaller BZ sampling meshes. However, the converged

physical properties, i.e., ones that calculated with large

enough basis functions give only a few percent difference

as compared with experimental values [40, 51].

In Table 4, we present the calculated total magnetic

moments in the unit cell and in sphere. The total calcu-

lated magnetic moment is stable with respect to sphere

size and is in excellent agreement with the experimentally

known value [54]. On the other hand, μ in the sphere

should depend on the volume occupied by the MT sphere

in the unit cell. For ferromagnetic bcc Fe, the majority

spins are concentrated around the atomic site. However,

there are negative dog-bone shape regions in the inter-

stitial region with minority spins, as seen in Fig. 3. As

consequence, μ in the sphere first increases with RMT, will

decrease as the radius increases beyond 2.3 a.u. 

4. Conclusion

We have tested the convergence behavior of the total

energy for ferromagnetic bulk bcc Fe using the all-electr-

on FLAPW method with the XO scheme. The depen-

dence of the convergence on the star function cutoff Gmax

B = V–
∂P

∂V
-------- = V–

∂
∂V
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Table 4. Calculated total magnetic moments per atom μT and

in the sphere μR (in units of μB) for different sphere radii.

RMT (a.u.) μT μR

1.9 2.269 2.281

2.0 2.269 2.305

2.1 2.269 2.321

2.2 2.269 2.328

2.3 2.269 2.329

Table 3. Calculated static physical properties, equilibrium lattice parameter a (in units of a.u.) and bulk modulus B (in units of

GPa), for the case of Kmax = 3.5, 4, and 5 (2π/a) and RMTKmax = 10 and the BZ integration mesh of 17 × 17 × 17.

RMT (a.u.)
Kmax = 3.5 Kmax = 4 Kmax = 5 RMTKmax = 10

a B a B a B a B

1.9 5.321 628.3 5.339 188.2 5.378 162.8 5.378 163.3

2.0 5.336 342.3 5.351 175.4 5.368 167.3 5.381 165.4

2.1 5.356 229.7 5.359 174.7 5.367 171.8 5.383 167.9

2.2 5.372 192.5 5.365 175.8 5.369 174.4 5.387 170.1

2.3 5.384 180.5 5.369 178.0 5.372 176.5 5.392 173.7

Theory (Ref. [47]) − 214.1

Exp. (Ref. [41]) 5.4169

Exp. (Ref. [48]) − 173.1

Fig. 3. Calculated spin density contour plot on the (110) plane

of bcc Fe for the case of RMT = 2.2 a.u., lmax = 10, and the BZ

integration mesh of 17 × 17 × 17. Solid lines and broken lines

represent the positively and negatively polarized spin densities,

respectively. Contours start from ±1.0 × 10−3 electrons/a.u.3 and

the subsequent contours are increased by a factor √2.
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is found to be minimal and a value around three times

Kmax of the plane-wave cutoff is reasonable. The custo-

mary relationship lmax = RMTKmax, while a reasonable rule

of thumb, is not justified in practice and a more reason-

able approach is to check the convergence with respect to

Kmax directly. Likewise, the dependence on lmax was found

to be small, and values of lmax = 8−10 are reasonable

choices in a variety of cases. In general, to be able to

compare total energies, it is important to keep as many

computational parameters as possible constant; in parti-

cular, while the calculated properties are fairly insensitive

to the choice of MT radii, using the same radius and mesh

parameters will facilitate comparisons among different

calculations. This is due to in part the power of the XO

treatment on the basis functions.

For converged systems, the calculated lattice parameter

and bulk modulus agree with the experimental values

within a few percent difference by the theory. Similarly,

the calculated magnetic moment is in excellent agreement

with the experimental number. We found that the calcu-

lation of physical properties requires the careful consider-

ation of the possible roundoff errors during the numerical

derivatives. Thus, it is important to understand the conver-

gence of calculated properties when trying to extract

physical trends.
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