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Melting Heat Transfer in Thermally Stratified Magnetohydrodynamic Flow 
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Features of melting heat transfer as well as homogeneous-heterogeneous reaction in thermally stratified stagna-

tion flow of Eyring-Powell fluid along with heat generation/absorption effects are explored in this article. Fluid

flow is examined over a sheet of variable thickness in the presence of stretching phenomena. Variable strength

of magnetic field is considered normal to the flow field. Suitable transformations are introduced for the sake of

conversion of partial differential equations to ordinary differential equations. Homotopic method is utilized to

tackle highly nonlinear problem and series solutions are attained. Behaviors of relevant parameters are por-

trayed for velocity, thermal and concentration distributions. Graphical results reveal that the concentration

profile enhances for higher Schmidt number while it exhibits recessive behavior for increment in homogeneous

reaction parameter. Larger values of heterogeneous reaction parameter result in intensified concentration field.

Velocity field declines as a result of increment in fluid parameters  as well as  *.

Keywords : Melting heat transfer, MHD, Eyring-Powell fluid, Homogeneous-heterogeneous reaction, Heat genera-

tion/absorption, Stagnation point, Variable sheet thickness

Nomenclature

1 : Thermal conductivity 

u, v : Velocity components 

T : Fluid temperature 

Tm : Melting surface temperature 

B : Magnetic field 

S : Thermal stratification 

Uw : Stretching velocity 

Ue : Ambient velocity 

Re : Reynolds number 

Sc : Schmidt number 

Ha : Hartmann number 

A : Ratio of velocity 

Cf : Skin friction coefficient 

Nu :  Nusselt number 

M : Melting parameter 

Pr : Prandtl number 

1 : Latent Heat 

T∞ : Free stream temperature 

K : Homogeneous reaction parameter

Ks : Heterogeneous reaction parameter

cp : Specific heat capacity 

B0 : Applied magnetic field 

k : Thermal conductivity 

 : Kinematic viscosity 

 : Ratio of mass diffusion coefficients

 : Fluid density 

,  : Similarity variable 

 : Dimensionless temperature 

 : Dynamic viscosity 

xy : Shear stresses 

 : Heat generation/absorption parameter 

 : Dimensionless reaction rate 

,  * : Material fluid parameters 

 : Electric conductivity 

 : Wall thickness parameter 

1. Introduction

There are abundant chemically reacting processes which

involve heterogeneous and homogeneous reactions.

Several complicated relations are involved in these type

of reactions. Amongst all, fewer reactions of them are

totally unable to proceed or have low capacity in this

regard except for case in presence of catalyst. Such types
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of reactions occur in biochemical systems, fog formation

as well as dispersion, hydrometallurgical industry, pro-

cessing of foods, production of polymer and ceramics etc.

Merkin [1] suggested an isothermal model to study

viscous fluid flow along with chemical species. Yasmeen

et al. [2] investigated features of chemical species in

Ferrofluid flow. Sandeep et al. [3] analyzed the Jeffrey

Nanofluid flow along with chemical reactions and induced

magnetic field. Khan et al. [4] focused on chemical

species analysis for Casson fluid flow. An exclusive

analysis for the flow of carbon nanotubes with chemical

species is given by Hayat et al. [5]. Lu et al. [6] interro-

gated the interactive relation of heterogeneous-homogene-

ous reaction of air and hydrogen mixture. 

Analysis of fluid flow along with heat transfer because

of stretched surface has tremendous utilization in polymer

industries and plenty of production processes. Heat transfer

via melting process is extensively involved in the modern

industrial and technological processes due to which

numerous researchers are keen to explore it. Its industrial

applications include melting of permafrost and thawing of

frozen grounds, magma solidification, glass blowing,

portrayal of plastic films and fibre technology. Adegbie et

al. [7] scrutinized the heat transfer impact via melting

process for the flow of micropolar fluid. Mahmoud and

Waheed [8] addressed the aspects of heat transfer through

micropolar fluid along with phenomenon of melting.

Influence of melting heat transfer for magnetohydro-

dynamic flow is described by Abel and Sanamani [9].

Mabood and Das [10] made an effort to discuss the

melting heat phenomenon of nanofluid flow along with

radiative effects and slip condition of second order. Heat

transfer by melting phenomena with dual stratification

effects in viscous nanofluid flow are elaborated by Farooq

et al. [11]. Javed et al. [12] communicated process of

melting heat transfer in thermally stratified flow entrench-

ed in porous medium along with radiative effects.

Behaviors of non-Newtonian fluid flows [13-25] have

attracted researchers because of their significant appli-

cations in chemical and petroleum industries, metallur-

gical processes, fibre technology, food products, biological

sciences and so forth. Several constitutive relations have

been proposed in literature to construe non-Newtonian

materials. Such materials can be divided in to three

categories integral, differential and rate type fluids.

Several years ago in 1944, Eyring and Powell [26] pre-

sented Eyring-Powell fluid model. In order to derive this

model, kinetic theory of gases has been utilized instead of

the empirical relation. Eyring-Powell fluids have the

ability to recover Newtonian behavior at high and low

shear rates. Tooth paste, ketchup and blood are some of

examples representing Eyring-Powell fluid. Such fluid

flow over stretched sheet with thermal conductivity of

variable nature is reported by Megahed [27]. Jalil et al.

[28] discussed the properties of heat transfer of Eyring-

Powell fluid on a moving surface. Ara et al. [29] analyzed

thermal radiative impact on Eyring-Powell fluid towards

a sheet which is exponentially shrinking. A comparative

study of Eyring-Powell fluid with heat generation/ab-

sorption effects is carried out by Hayat et al. [30]. Some

relevant studies can be found in [31-33].

Our aim here is to reconnoiter melting heat transfer

aspects along with chemical species in Eyring-Powell

fluid flow over a sheet of variable thickness. To disclose

features of fluid flow, nonlinear stretching phenomena is

employed. Heat generation/absorption effects are also

considered in this study. Further stagnation point is retain-

ed here. Suitable transformations are utilized to transmute

nonlinear PDE's to nonlinear ODE's which are then

tackled by the method of Homotopic analysis HAM [37-

46] to attain series solution. Graphical behaviors of relevant

parameters are portrayed for velocity, thermal and con-

centration distributions.

2. Mathematical Formulation

We consider a plate possessing variable thickness over

which stagnation flow of Eyring-Powell fluid is examin-

ed. Features of heat transfer are explored by making use

of more appropriate condition (melting heat transfer) on

surface. Homogeneous-heterogeneous reaction as well as

heat generation/absorption effects are also deliberated

here. Varying magnetic field is operated normal to flow

field. Ambient temperature  is dominant as compared

to the wall temperature Tm.

Further we have taken similar diffusion coefficients for

both species. Advanced model regarding homogeneous-

heterogeneous reaction is carefully selected as [1]:

T


Fig. 1. (Color online) Geometry of problem.
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The catalytic 1st order isothermal reaction is designated

by

Here a and b signify the concerning concentrations of

chemical species A and B. While kc and ks represent rate

constants. By making use of boundary layer approximations,

flow analysis under consideration become:

 (1)

 (2)

 (3)

 (4)

 (5)

along relevant conditions at boundary,

 (6)

In x and y directions we have represented the velocity

components by u and v respectively, stretching velocity

by Uw, ambient velocity by Ue, kinematic viscosity by ,

power index by n, a0, B*, c and d are dimensional

constants, cs denote specific heat of solid surface,

stands for density, 1 signifies latent heat, DA and DB

show diffusion coefficients for species A and B respec-

tively, T and Tm express fluid temperature and melting

surface temperature respectively, Ks represent heterogene-

ous reaction parameter, k the thermal conductivity,  the

free stream temperature, U0,  are the velocities for

reference and T0 is reference temperature.

Writing,

 (7)

the incompressibility condition (Eq. 1) is satisfied auto-

matically , however Eqs. (2-5) become,

 (8)

 (9)

 (10)

 (11)

with subjected boundary conditions, 

 (12)

here , while prime denote differentiation

with respect to ‘ ’. Letting ,

,  and
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 (15)

 (16)

 (17)

Here Pr denotes the Prandtl number,  shows ratio of

mass diffusion coefficients,  * and  depict material fluid

parameters, Sc represents Schmidt number,  denote heat

generation/absorption parameter, K stands for homogene-

ous reaction parameter, Ks depicts heterogeneous reaction

parameter, A is ratio of velocities, S signifies thermal

stratification, Ha the Hartman number,  represents the

wall thickness parameter and M is melting parameter.

Mathematical interpretation for all of these quantities is

given below,

 (18)

Here it is important to mention that M is combined of

Stefan numbers  and  of liquid and solid

phases respectively. M = 0 interprets absence of melting

phenomena. Similar size of relevant diffusive coefficients

of chemical species A and B is presumed. Using this

argument we take up equal values of DA and DB i.e., = 1

[5]. Thus,

 (19)

From Eq. (15-16), we obtain,

 (20)

 (21)

Interpretation for Cf (skin friction coefficient) and Nu

(Nusselt number) in mathematical form implies,

here mathematical expression for shear stress w as well

as heat flux qw on wall gives,

Non dimensional form of these quantities is given below,

 (22)

Local Reynolds number = Rex = .

3. Homotopic Procedure

Homotopic analysis method (HAM) was introduced by

Liao [38]. Main target of this method is to counter

problems of highly nonlinear nature. It efficiently

provides space to pick initial guesses as well as linear

operators. Relevant auxiliary operators (linear) and initial

approximations for the problem under consideration are

selected as follows,

 (23)

 (24)

 (25)

 (26)

The auxiliary linear operators satisfy the below listed

operators, 

 (27)

 (28)

 (29)

Ei represents arbitrary constants, i = 1, 2,..., 7.

3.1. Deformation of zeroth order
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 (31)

 (32)

 (33)

 

(34)

 (35)

 

 (36)

here embedding parameter is represented by 

and non-zero auxiliary parameters are denoted by hf, 

and .

3.2. Deformation of mth-order
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For  and  it follows, 
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Following expressions are obtained for Taylor series at

,
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special solutions  are presented as:
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Using boundary conditions we write

 (54)

4. Convergence Analysis

As suggested by Liao [38], homotopic procedures

(HAM) are utilized to determine series solutions of the

problem under consideration which is of highly nonlinear

nature. It is well established argument about HAM that it

provides sufficient convenience in adjusting and regula-

ting region of convergence for series solution. In this

regard, h curves are sketched to portray permissible

ranges of ,  and  (auxiliary parameters) i.e.

  

With the help of numerical data Table 1 demonstrates the

convergence of resultant series solutions. 7th order of

approximation is noticed to be good enough for the

solution to converge.
 

The curves for f(0), (0) and g(0) when  =  * = M

= K = 0.4, n = Ks = K = S =  =  = Ha = 0.2, A = 0.1

and Pr = 1.2.

5. Discussion

This segment is devoted for analysis of different para-

meters with respect to velocity, thermal and concentration

distributions. In Figs. 4-5 influence of fluid parameters 

and   is portrayed for velocity profile . Fig. 4

depicts declining attitude of  for uplifted values of

fluid parameter . Same is the case for momentum boundary

layer thickness. We know  = C1, for increased  it

refers to enhancement in viscosity of fluid. Increment in

viscosity ultimately reduces velocity field. Effect of fluid

parameter   upon the velocity field has been sketched in
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Fig. 2. (Color online) h-curve for f (0) and θ(0).

Fig. 3. (Color online) h-curve for g(0).

Table 1. Convergence (HAM solutions) for  =  * = M = K =

0.4, n = Ks = K = S =  =  = Ha = 0.2, A = 0.1 and Pr = 1.2.

Order of 

Approximation
 f'' (0) θ' (0) g' (0)

 1 0.7695 0.1181 0.1382

 3 0.7882 0.1813 0.1485

 5 0.8889 0.1572 0.1949

 7 0.8280 0.1416 0.1949

 9 0.8280 0.1416 0.1949

Fig. 4. (Color online) Display for  over f'.
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Fig. 5. It also shows the decrement in velocity field

however momentum boundary layer thickness enhances

in this case. Impact of melting parameter M on velocity

field is established in Fig. 6. Evidently velocity field rises

up for growing melting parameter and same is the case

for momentum boundary layer thickness. It is justified by

the reason as melting process gets intensified it gives rise

to more convective flow which strengthens velocity field.

The way wall thickness parameter  behaves for 

is revealed in Fig. 7. Larger values of  result in de-

preciated behavior of velocity profile . Increment

in  refers to strength of wall thickness due to which

stretching behavior reduces and becomes the reason for

weaker velocity. Fig. 8 interprets graphical behavior of K

(homogeneous reaction parameter) for concentration field

g(). Weak concentration field is obtained for higher

intensity of K while boundary layer thickness gets boost-

ed in this case. Influence of Ks (heterogeneous reaction

parameter) on g() is sketched in Fig. 9. Enhanced

concentration profile is judged for developed intensity of

Ks while declining behavior for concentration boundary

layer thickness is observed. Fig. 10 describes features of

Schmidt number Sc with respect to concentration field

g(). Enhancement of concentration is observed for

increasing Schmidt number Sc. Increment in Schmidt

number refers to decreased mass diffusivity and it justifies

the strength of the profile for concentration. While opposite

 f  

 f  

Fig. 5. (Color online) Display for  * over f '.

Fig. 6. (Color online) Display for M over f '. 

Fig. 7. (Color online) Display for  over f '.

Fig. 8. (Color online) Display for K over g.

Fig. 9. (Color online) Display for Ks over g.
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behavior of boundary layer thickness is noted for solutal

case. Fig. 11 shows influence of ratio velocity parameter

A upon . It is identified that velocity profile

enhances as a result of larger values of A. It reveals an

interesting behavior of momentum boundary layer thick-

ness which grows up for A < 1 and it gets weaker for A >

1. It is worth mentioning no boundary layer occurs for the

case A = 1. It is physically justified because for the case

of A = 1 both wall and the fluid travel with identical

velocities. Fig. 12 displays the impact of n (the power

index) on . Weaker velocity profile is depicted for

higher power index n. While Fig. 13 show impact of

melting parameter on thermal field (). Depreciated

behavior of temperature field is noted as a result of increase

in M. For the case of strength of M, greater amount of

heat gets shifted from heated fluid towards melting

surface which ultimately lessens temperature of fluid. Fig.

14 interprets the analysis of  on thermal field (). Due

to higher values of  there is seen decrement in thermal

field. It is physically endorsed as heat generation process

enhances convective type of flow from hot fluid to melting

surface and ultimately temperature of fluid decreases.

However thermal boundary layer thickness exhibits opposite

behavior. Fig. 15 gives comprehension of Prandtl number

Pr for thermal distribution (). Clearly temperature rises

as Prandtl number increases. Due to lower thermal diffu-

sivity lesser heat transfers from fluid at high temperature

to the cold surface and ultimately temperature of fluid

remains high. On contrary to this thermal boundary layer

thickness shows weaker attitude. Characteristics of Hartman

number Ha and  for skin friction coefficient Cf are

 f  

 f  

Fig. 10. (Color online) Display for Sc over g.

Fig. 11. (Color online) Display for A over f '.

Fig. 12. (Color online) Display for n over f '.

Fig. 13. (Color online) Display for M over .

Fig. 14. (Color online) Display for  over .
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scrutinized in Fig. 16. Cf depreciates both for wall

thickness parameter  as well as Hartman number Ha.

Demonstration regarding effect of M and Pr on Nusselt

number is given in Fig. 17. Nusselt number shows recessive

outcome for higher melting parameterM however pro-

gressive behavior is noted for Prandtl number Pr. Com-

parative results reveal good agreement (see Table 2) for

different values of f ''(0) with already published data in

the limiting case.

6. Closing Remarks

Aspects of heat transfer via melting process with

chemical species are studied in thermally stratified MHD

flow of Eyring-Powell fluid towards a sheet of varying

thickness. Concluding key features are summarized as

follows:

1. Velocity field declines as a result of increment in

fluid parameters as well as   *.

2. Increment in Schmidt number enhances concentration

profile.

3. Concentration of reactants exhibit recessive behavior

as a result of boosted values of K.

4. Growth of Ks results in intensified field for concen-

tration.

5. Thermal field drops with growth of heat generation/

absorption parameter.

6. Skin friction gets weaker for uplifted wall thickness

parameter.

7. Gradual decline in thermal field is noticed for increased

melting parameter.

References

[1] J. H. Merkin, Math. Comp. Model 24, 125 (1996). 

[2] T. Yasmeen, T. Hayat, M. I. Khan, M. Imtiaz, and A.

Alsaedi, J. Mol. Liq. 223, 1000 (2016).

[3] N. Sandeep, C. Sulochana, and A. I. Lare, Int. J. Engg.

Res. in Afr. 20, 93 (2016).

[4] M. I. Khan, M. Waqas, T. Hayat, and A. Alsaedi, Int. J.

Coll. Int. Sci. 498, 85 (2017).

[5] T. Hayat, M. Farooq, and A. Alsaedi, AIP Adv. 5,

027130 (2015).

[6] Q. Lu, J. Pan, W. Yang, A. Tang, S. Bani, and X. Shao,

Int. J. Hyd. Energy 42, 5390 (2017).

[7] S. K. Adegbie, O. K. Koriko, and I. L. Animasaun, J.

Nig. Math., Soc. 35, 34 (2016). 

Fig. 15. (Color online) Display for Pr over .

Fig. 16. (Color online) Display for Ha and  over Cf.

Fig. 17. (Color online) Display for Pr and M over Nu.

Table 2. Comparative data of f ''(0) with previous published

results for A = 0.1, 0.2, 0.5, 0.7, 0.9 when  = 0,  * = 0, Ha =

0, n = 1.

A
Pop et al. 

[34]

Mahapatra and 

Gupta [35]

Sharma and 

Singh [36]

Present 

results

0.1 0.9694 0.9694 0.969386 0.969391

0.2 0.9181 0.9181 0.918106 0.918119

0.5 0.6673 0.6673 0.667263 0.667270

0.7 0.433462

0.9 0.154581



Journal of Magnetics, Vol. 24, No. 2, June 2019  211 

[8] M. A. A. Mahmoud and S. E. Waheed, App. Math.

Mech. 35, 979 (2014).

[9] M. S. Abel and J. Sanamani, IOSR J. Math. 11, 91

(2015).

[10] F. Mabood and K. Das, Eur. Phys. J. Plus 3, 131 (2016).

[11] M. Farooq, M. Javed, M. I. Khan, A. Anjum, and T.

Hayat, Res. in Phys. 7, 2296 (2017).

[12] M. Javed, M. Farooq, S. Ahmad, and Aisha Anjum, J.

Cent. S. Uni. 25, 2701 (2018).

[13] M. Usman, F. A. Soomro, R. U. Haq, W. Wang, and O.

Defterli, Int. J. Heat Mass Tran. 122, 1255 (2018).

[14] F. A. Soomro, R. U. Haq, Q. M. Al-Mdallal, and Q.

Zhang, Res. in Phys. 8, 404 (2018).

[15] F. U. Rehman, S. Nadeem, H. U. Rehman, and R. U.

Haq, Res. in Phys. 8, 316 (2018).

[16] M. Usman, T. Zubair, M. Hamid, R. U. Haq, and W.

Wang, Phys. of Fluids 30, 023104 (2018).

[17] M. Usman, R. U. Haq, M. Hamid, and W. Wang, Int. J.

Mol. Liq. 249, 856 (2018).

[18] S. S. Ghadikolaei, K. Hosseinzadeh, and D. D. Ganji,

Powd. Tech. 338, 425 (2018).

[19] S. S. Ghadikolaei, K. Hosseinzadeh, D. D. Ganji, and B.

Jafari, Case St. Ther. Engg. 12, 176 (2018).

[20] A. Shojaei, A. J. Amiri, S. S. Ardahaie, K. Hosseinzadeh,

and D. D. Ganji, Case St. Ther. Engg. 13, 100384 (2019).

[21] A. S. Dogonchi, M. Hatami, K. Hosseinzadeh, and G.

Domairry, Powd. Tech. 278, 248 (2015).

[22] S. S. Ghadikolaei, K. Hosseinzadeh, M. Yassari, H. Sade-

ghi, and D. D. Ganji, Ther. Sci. Engg. Prog. 5, 309

(2018).

[23] S. S. Ardahaie, A. J. Amiri, A. Amouei, K. Hosseinza-

deh, and D. D. Ganji, Info. Med. Unlock. 10, 71 (2018).

[24] K. Hosseinzadeh, A. J. Amiri, S. S. Ardahaie, and D. D.

Ganji, Case St. Ther. Engg. 10, 595 (2017).

[25] S. A. Atouei, K. Hosseinzadeh, M. Hatami, S. E. Ghasemi,

S. A. R. Sahebi, and D. D. Ganji, App. Ther. Engg. 89,

299 (2015).

[26] R. E. Powell and H. Eyring, Nature 154, 427 (1944).

[27] M. A. Megahed, Zeits. für Naturfor. A. 70, 163 (2015).

[28] M. Jalil, S. Asghar, and S. M. Imran, Int. J. of Heat and

Mass Tran. 65, 73 (2013).

[29] A. Ara, N. A. Khan, H. Khan, and F. Sultan, Ain Shams

Engg. J. 5, 1337 (2014).

[30] T. Hayat, S. Ali, M. A. Farooq, and A. Alsaedi, PLoS

One 10, 1 (2015). 

[31] M. Gholinia, K. Hosseinzadeh, H. Mehrzadi, D. D.

Ganji, and A. A. Ranjbar, Case St. Ther. Engg. 13,

100356 (2019).

[32] J. Rahimi, D. D. Ganji, M. Khaki, and K. Hosseinzadeh,

Alex. Engg. J. 56, 621 (2017).

[33] S. S. Ghadikolaei, K. Hosseinzadeh, and D. D. Ganji,

Case St. Ther. Engg. 10, 579 (2017).

[34] S. Pop, T. Grosan, and I. Pop, Techn. Mech. 25, 100

(2004).

[35] T. R. Mahapatra and A. Gupta, Heat Mass Trans. 38, 517

(2002).

[36] P. Sharma and G. Singh, J. Appl. Fluid Mech. 2, 13

(2009).

[37] L. Shijun, App. Math and Mech. 10, 957 (1998).

[38] S. J. Liao, Homotopy analysis method in non-linear dif-

ferential equations (Springer and Higher Education Press,

Heidelberg, 2012).

[39] S. Abbasbandy, M. S. Hashemi, and I. Hashim, Quaes-

tiones Mathematicae 36, 93 (2013).

[40] M. Turkyilmazoglu, Commun. Nonlinear Sci. Numer.

Simulat. 17, 4097 (2012).

[41] M. Khan and W. A. Khan, J. Mol. Liq. 221, 651 (2016).

[42] T. Hayat and M. Sajid, Phys. Lett. A 361, 316 (2007).

[43] J. Zhu, D. Yang, L. Zheng, and X. Zhang, Appl. Math.

Letters 52, 183 (2016).

[44] T. Hayat, M. Farooq, and A. Alsaedi, Int. J. Num. Meth.

Heat Fluid Flow 25, 724 (2015).

[45] H. Hassan and M. M. Rashidi, Int. J. Num. Meth. Heat

Fluid Flow 24, 419 (2014).

[46] T. Hayat, S. Ali, M. Awais, and M. S. Alhuthali, App.

Math. and Mech. (English Edition) 36, 61 (2015).


