Distinct Magnetic Properties of CoFe₂O₄ by Tetrahedral Mg²⁺ Substitution

Kwang Joo Kim¹, Jongho Park¹, and Jae Yun Park^{2*}

¹Department of Physics, Konkuk University, Seoul 05029, Republic of Korea ²Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea

(Received 20 May 2022, Received in final form 2 September 2022, Accepted 14 September 2022)

Magnetic hysteresis curves of cobalt ferrites with a fraction of cobalt being replaced by magnesium $(Mg_xCo_{1-x}Fe_2O_4)$ were investigated by vibrating sample magnetometry (VSM). The specimens with $x \le 0.2$ were prepared as thin films on silicon substrates by using a sol-gel deposition process. The VSM result revealed that the saturation magnetizations (M_s) of the Mg-substituted specimens were higher than that of CoFe₂O₄. The result of Raman spectral analysis suggested that the Mg-substituted specimens had higher tetrahedral Co²⁺ density in the spinel lattice compared to CoFe₂O₄. The increase in M_s for Mg_xCo_{1-x}Fe₂O₄ is ascribed to two reasons, the increase in tetrahedral Co²⁺ density and significant Mg²⁺ occupation in the tetrahedral sites.

Keywords : cobalt ferrite, magnesium, thin film, magnetic hysteresis, Raman spectroscopy

1. Introduction

Ferrimagnetic transition-metal-oxide compounds have been under a great deal of attention due to their applications as well as physical understanding. As one of the oxides, $CoFe_2O_4$ and its alloys made by substituting Co or Fe ions by other metallic cations are known to have potential applications such as magnetic resonance imaging [1], magneto-mechanical sensing [2], microwave absorption [3], and energy storage [4].

 $CoFe_2O_4$ has crystal structure of spinel in which Co^{2+} and Fe^{3+} cations occupy either the 8a (tetrahedral) or the 16d (octahedral) sites surrounded by four and six O^{2-} anions at the 32e sites, respectively. Experimental studies on ferrimagnetic $CoFe_2O_4$ have suggested that the majority of Co^{2+} ions tend to occupy the octahedral (B) sites rather than the tetrahedral (A) sites [5-7] with the intrinsic magnetization being the difference between the antiparallel magnetic moments of the two sites. However, there have been reports in which the Co^{2+} ions exhibited significant A-site occupancy in spinel ferrites [8-11].

The Co²⁺ occupancy in CoFe₂O₄ used to be expressed in terms of the inversion parameter δ [8] defined as $(Co^{2+}_{1-\delta} Fe^{3+}_{\delta})^{A}[Co^{2+}_{\delta} Fe^{3+}_{2-\delta}]^{B}O_{4}$. In case $\delta = 1$, called perfect inverse-spinel, all Co²⁺ ions occupy the B sites, while Fe³⁺ ions occupy A and B sites equally. In theoretical ferrimagnetic state of CoFe₂O₄, Co²⁺ and Fe³⁺ ions tend to have magnetic moments of ~3.0 and ~5.0 μ_B , respectively. Thus, for perfect inverse-spinel ($\delta = 1$), net magnetic moment for one formula unit of CoFe₂O₄ is estimated to be ~3.0 μ_B . On the other hand, the net magnetic moment for $\delta = 0.7$, where 30 % of Co²⁺ ions occupy A sites, is estimated to be ~4.2 μ_B , being larger than that of $\delta = 1$. So, ferrimagnetic CoFe₂O₄ is expected to exhibit an increase in magnetization as the Co²⁺(A) population increases. Such tetrahedral preference of Co²⁺ ions is likely to vary when other metallic elements occupy the A or B sites for replacing Co²⁺ or Fe³⁺ ions.

The purpose of this work is to investigate the effects of magnesium (Mg) substitution of Co on the structural and magnetic properties of the cobalt ferrites (CoFe₂O₄ \rightarrow Mg_xCo_{1-x}Fe₂O₄). The Mg²⁺ substitution in the spinel lattice is likely to affect the distribution of Co²⁺ and Fe³⁺ ions among the A and B sites, altering the physical properties of the cobalt ferrites.

 $Mg_xCo_{1-x}Fe_2O_4$ specimens were prepared as thin films by a sol-gel process that is known to be advantageous in controlling chemical composition. The structural properties of the specimens were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The magnetic hysteresis curves of the specimens were investigated by vibrating sample magnetometry (VSM). The magnetic evolution of $Mg_xCo_{1-x}Fe_2O_4$ is discussed in comparison with that of

[©]The Korean Magnetics Society. All rights reserved. *Corresponding author: Tel: +82-32-835-8271 Fax: +82-32-835-0788, e-mail: pjy@inu.ac.kr

Ca-substituted $Ca_xCo_{1-x}Fe_2O_4$ obtained in a previous study [12]. Although the Mg^{2+} ions are expected to exhibit no magnetic moment, their preference among the 8a and 16d sites in the spinel lattice is likely to affect the magnetic properties of ferrimagnetic $Mg_xCo_{1-x}Fe_2O_4$.

2. Experimental

A series of $Mg_xCo_{1-x}Fe_2O_4$ specimens with $x \le 0.2$ were prepared through a sol-gel deposition process as follows: (1) Preparation of the precursor solution by dissolving $Fe(NO_3)_3 \cdot 9H_2O$ and $Co(CH_3COO)_2 \cdot 4H_2O$ together in 2methoxyethanol and ethanolamine at 170 °C for 1 h. For Mg doping Mg(CH_3COO)_2 \cdot 4H_2O was added. (2) Repetition of spin-coating Si(100) substrate using the precursor solution at 3000 rpm for 20 s followed by pre-heating at 300 °C for 5 min. (3) Post-annealing of the gel film in air at 800 °C for 4 h. The thicknesses of the film specimens are in the 250-300 nm range. The specimens contain grains with the size mostly in the 50-100 nm range observed by scanning electron microscopy.

The crystalline structure of the specimens was monitored by using XRD (Cu K_{α} line, wavelength = 0.15418 nm) in the grazing-incidence geometry with fixed X-ray incidence angle of 4°. The vibrational modes of the specimens were investigated by Raman spectroscopy employing a diode laser (wavelength = 514 nm, power = 1 mW). The XPS measurements on the specimens were performed using Al K_{α} line (photon energy = 1486.7 eV). The magnetic hysteresis curves of the specimens were measured at room temperature by using VSM in which the external magnetic field applied parallel to the film's plane was varied up to 15 kOe.

3. Results and Discussion

The crystalline properties of the Mg_xCo_{1-x}Fe₂O₄ specimens were investigated by XRD in comparison with CoFe₂O₄ as shown in Fig. 1. The XRD peak positions of the Mgdoped specimens are practically identical to those of the pristine CoFe₂O₄. The estimated lattice constants of the specimens based on the XRD data are close to 0.837 nm. The existence of Mg²⁺ ions in the specimens was probed by XPS of Mg 1*s* electrons, exhibiting a peak near the binding energy (BE) of 1303 eV, as shown in Fig. 2(a). In Fig. 2(b), the $2p_{3/2}$ and $2p_{1/2}$ peaks for Co ions are located at about 779.5 and 795.3 eV, respectively. The spin-orbit (s-o) energy splitting of 15.8 eV determined from the spectra implies that the Co ions in the specimens have valence of +2 [13]. In Fig. 2(c), the $2p_{3/2}$ and $2p_{1/2}$ peaks for Fe ions are peaked at about 710.5 and 723.9 eV,

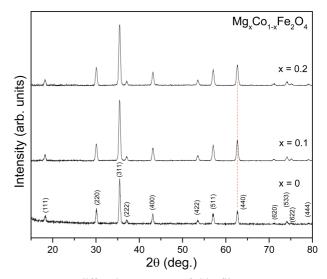
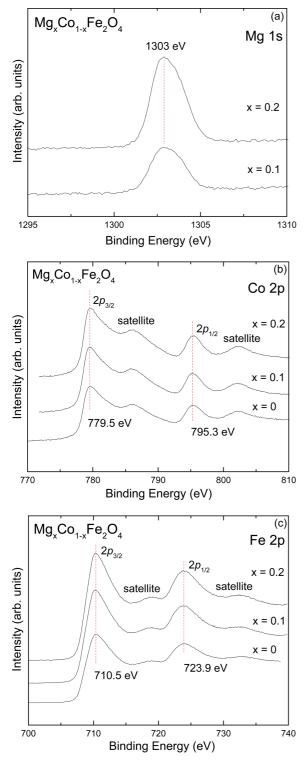
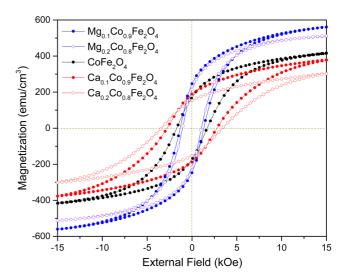



Fig. 1. X-ray diffraction patterns of thin-film Mg_xCo_{1-x}Fe₂O₄.


respectively. The 2p s-o splitting of 13.4 eV implies that the Fe ions in the specimens have valence of +3 [13]. All the peaks in the Fe 2p spectra (including satellites) are similar in shape and BE to those of α -Fe₂O₃ having Fe³⁺ ions [14, 15]. The satellites appeared in the 2p spectra of Fe³⁺ and Co²⁺ ions are attributable to the energy loss of the photoelectrons due to their interactions with high-spin 3*d* electrons in the ions [13]. The asymmetric shapes of the Fe and Co 2p-electron peaks in Figs. 2(b) and 2(c) imply that the peaks are composed of two origins, e.g., Fe³⁺(B) and Fe³⁺(A). The tetrahedral ions have higher BE than the octahedral ones by ~1 eV [16].

In Fig. 3, magnetic hysteresis loops of the Mg_xCo_{1-x}-Fe₂O₄ specimens measured by using VSM are exhibited in comparison with those of CoFe₂O₄ and Ca_xCo_{1-x}Fe₂O₄ [12]. For the Mg-doped specimens, saturation magnetization (M_s) is larger than that of $CoFe_2O_4$ (415 emu/cm³ = 79.3 emu/g), while coercivity (H_C) is smaller than that of CoFe₂O₄ (1.7 kOe). A similar magnetic behavior was reported for Zn_xCoFe_{2-x}O₄ powder specimens [2]. On the other hand, for Ca_xCo_{1-x}Fe₂O₄, M_S was smaller than that of CoFe₂O₄, while H_C was larger than that of CoFe₂O₄. The values of M_S , remanence (M_R) , and H_C for the Mg_xCo_{1-x}Fe₂O₄ specimens are exhibited in comparison with those for $Ca_xCo_{1-x}Fe_2O_4$ in Figs. 4(a), 4(b), and 4(c), respectively. The values of M_S for Mg_xCo_{1-x}Fe₂O₄ are 561 and 510 emu/cm³, respectively, for x = 0.1 and 0.2. For $Ca_x Co_{1-x} Fe_2 O_4$, they were 379 and 303 emu/cm³, respectively, for x = 0.1 and 0.2 [12]. The decrease (increase) in H_C for the Mg-doped (Ca-doped) specimens is attributable to the decrease (increase) in magnetic anisotropy. The magnetic anisotropy constant (K) can be estimated using the relation $M_SH_C = (0.96)K$, where M_S , H_C , and K have

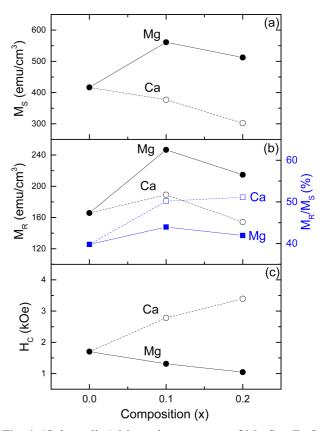
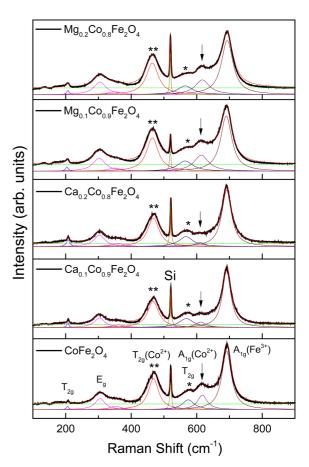


Fig. 2. (Color online) X-ray photoelectron spectra of (a) Mg 1s, (b) Co 2p, and (c) Fe 2p electrons of Mg_xCo_{1-x}Fe₂O₄ specimens.

the unit of G [= $(4\pi)^{-1}$ emu/cm³], Oe, and J/m³, respectively [17]. The values of K for the Mg_xCo_{1-x}Fe₂O₄ specimens are 5.8 × 10⁴ and 4.2 × 10⁴ J/m³, respec-

Fig. 3. (Color online) Magnetic hysteresis curves of $Mg_xCo_{1-x}Fe_2O_4$ specimens, exhibited in comparison with those of $Ca_{x-}Co_{1-x}Fe_2O_4$ in Ref. 12.

Fig. 4. (Color online) Magnetic parameters of $Mg_xCo_{1-x}Fe_2O_4$ specimens: (a) saturation magnetization (M_s), (b) remanence (M_R), and (c) coercivity (H_C), exhibited in comparison with those of $Ca_xCo_{1-x}Fe_2O_4$ in Ref. 12.


tively, for x = 0.1 and 0.2. The anisotropy constants were 8.8×10^4 and 8.5×10^4 J/m³ for x = 0.1 and 0.2, respec-

tively, for $Ca_xCo_{1-x}Fe_2O_4$ and 5.9×10^4 J/m³ for $CoFe_2O_4$ [12]. The squareness ratio (M_R/M_S) is also shown in Fig. 4(b) along with the M_R data (circles). As the Mg and Ca composition increases, the hysteresis curves become more square-like with increasing demagnetization. The squareness ratio increases near to 0.5 with increasing x, implying that the domains are randomly oriented in the demagnetized state [17].

In Fig. 5, Raman spectra of the Mg_xCo_{1-x}Fe₂O₄ specimens are shown in thick black lines in comparison with $CoFe_2O_4$ and $Ca_xCo_{1-x}Fe_2O_4$ [12]. The distinction in the Raman spectra between Mg_xCo_{1-x}Fe₂O₄ and Ca_xCo_{1-x}- Fe_2O_4 is the intensity (I_A) of a peak located near 615 cm⁻¹ as indicated by arrows. For Mg_xCo_{1-x}Fe₂O₄, I_A is larger than that of the neighboring peak near 580 cm⁻¹ as indicated by *, while the former is smaller than the latter for Ca_xCo_{1-x}Fe₂O₄. The 615-cm⁻¹ peak is ascribed to A_{1g} phonon mode for symmetric stretching vibration of O²⁻ ions surrounding tetrahedral Co2+ ion, denoted by A1g(Co2+) [18, 19]. So, the change in I_A is likely to indicate the change in tetrahedral Co²⁺ density. The peak located near 693 cm^{-1} is ascribed to A_{1g} mode related to tetrahedral Fe^{3+} ion, denoted by $A_{1g}(Fe^{3+})$ [18]. The peaks at the lower energies are ascribed to T_{2g} (580, 470, 207 $\mbox{cm}^{-1})$ and Eg (305 cm⁻¹) phonon modes for symmetric and antisymmetric bending vibrations, respectively, of O²⁻ ions surrounding the octahedral cations [18]. The sharp peak at 520 cm⁻¹ is ascribed to the Si substrate of the film.

Among the three T_{2g} peaks, the one near 470 cm⁻¹ (indicated by **) is the strongest. Such a peak is known to be absent in Raman spectra of Fe₃O₄ [20, 21], for which single A_{1g} peak was observed near 670 cm⁻¹. Thus, the 470-cm⁻¹ T_{2g} mode is ascribed to octahedral Co²⁺ ions [18], denoted by $T_{2g}(Co^{2+})$. The change in the intensity (I_B) of the 470-cm⁻¹ peak is likely to indicate the change in octahedral Co²⁺ density. Thus, the Raman spectra of Co_{1-x}T_xFe₂O₄ (T = Mg and Ca) turn out to show phonon modes involving both tetrahedral (615 cm⁻¹) and octahedral (470 cm⁻¹) Co²⁺ ions [18]. The intensity ratio (I_A:I_B) between 615-cm⁻¹ and 470-cm⁻¹ peak can be an indicative of the relative population of Co²⁺ ions between the A and B site.

The relative Co^{2+} population at the A and B sites of the specimens was estimated by curve-fitting the Raman spectra, as shown in Fig. 5, where the fitted curves of the spectra are shown as thin colored lines below the experimental data (thick black line). The areal ratio between the 615 cm⁻¹ (I_A) and 470 cm⁻¹ (I_B) peaks is likely to represent the relative population of Co²⁺ ions between the A and B site. For the Mg_xCo_{1-x}Fe₂O₄ specimens, the intensity ratio (I_A:I_B) turned out to be 38:62 and 36:64 for

Fig. 5. (Color online) Raman spectra of $Mg_xCo_{1-x}Fe_2O_4$ specimens, exhibited in comparison with those of $Ca_xCo_{1-x}Fe_2O_4$ in Ref. 12. Experimental data are drawn in black and thick-solid lines. Colored and thin-solid lines below the experimental curve represent the result of curve-fitting on the experimental data.

x = 0.1 and 0.2, respectively. Compared to CoFe₂O₄ (30:70), the A site occupancy of Co²⁺ ion is found to increase through the Mg doping. The Mg²⁺ substitution in the spinel lattice appears to boost Co²⁺ occupation in the A site. On the other hand, for Ca_xCo_{1-x}Fe₂O₄, the intensity ratio was 16:84 and 11:89 for x = 0.1 and 0.2, respectively [12], implying a reduction of the A site occupancy of Co²⁺ ion compared to CoFe₂O₄. Thus, the Raman spectral analyses predict the opposite behavior of Co²⁺ ions between the Mg²⁺ and Ca²⁺ substitution in CoFe₂O₄ although the two elements belong to the same group (II) in the periodic table.

The ionic distribution among the A and B sites for the Mg-substituted compounds can be described as $(\text{Co}^{2+}_{1-\delta} \text{Mg}^{2+}_{x-y} \text{Fe}^{3+}_{\delta})^{A}[\text{Co}^{2+}_{\delta-x} \text{Mg}^{2+}_{y} \text{Fe}^{3+}_{2-\delta}]^{B}O_{4}$ for x = 0.1 and 0.2. There have been reports in which Mg²⁺ ions can occupy both the A and B sites of the spinel ferrites [11, 22]. For Ca_xCo_{1-x}Fe₂O₄, the decrease of M_s with increasing

x could be explained by assuming B-site dominance of the Ca^{2+} ions. However, the increase of M_S for Mg_xCo_{1-x} -Fe₂O₄ compared to CoFe₂O₄ suggests that Mg^{2+} ions occupy both the A- and B-sites. The A-site occupation of non-magnetic Mg^{2+} ions may induce the migration of high-spin Fe³⁺ ions from A- to B-sites, leading to an increase of the net magnetic moment of the ferrimagnetic formula unit.

For x = 0.2 of Mg_xCo_{1-x}Fe₂O₄, the Raman intensity ratio (I_A:I_B) is estimated to be 36:64, which leads to the Co²⁺ compositions of 0.29 and 0.51 for the A- and Bsites, respectively. Assuming that 75 % and 25 % of the Mg²⁺ ions occupy the A- and B-sites, respectively, the ionic distribution for x = 0.2 becomes $(Co^{2+}_{0.29} Mg^{2+}_{0.15})$ $Fe^{3+}_{0.56})^{A}[Co^{2+}_{0.51} Mg^{2+}_{0.05} Fe^{3+}_{1.44}]^{B}O_{4}$, leading to $\delta =$ 0.56. The inversion parameter for x = 0.2 is smaller than that of CoFe₂O₄ ($\delta = 0.7$) [5, 6]. For Ca_xCo_{1-x}Fe₂O₄, it was estimated to be 0.91 for x = 0.2 where the Co²⁺ compositions are 0.09 and 0.71 for the A- and B-sites, respectively [12]. The magnetic moment per formula unit of Mg_xCo_{1-x}Fe₂O₄ (x = 0.2) is estimated to be 5.1 μ_B . It is larger by 20 % than that of CoFe₂O₄ (4.2 μ_B). In the calculation, the magnetic moments of Co^{2+} and Fe^{3+} ions are assumed to be 3 and 5 μ_B , respectively, while the Mg^{2+} ion is assumed to contribute no magnetic moment. Thus, the theoretical estimation under the assumption of 3:1 for A:B occupation ratio of Mg²⁺ ions is in good agreement with the experimental result: M_S of Mg_{0.2}Co_{0.8}- Fe_2O_4 (510 emu/cm³) is larger than that of $CoFe_2O_4$ (415 emu/cm³) by 20 %. The calculation under the assumption that all the Mg²⁺ ions occupy the B sites, $(Co^{2+}_{0.29})$ $Fe^{3+}_{0.71})^{A}[Co^{2+}_{0.51}Mg^{2+}_{0.2}Fe^{3+}_{1.29}]^{B}O_{4}$, produces the magnetic moment of 4.1 μ_B . It is smaller than that of CoFe₂O₄, so does not agree with the experimental result. Thus, the large M_s values of $Mg_xCo_{1-x}Fe_2O_4$ can be understood in terms of the tetrahedral preference of Mg²⁺ ions in the spinel lattice.

4. Conclusions

The magnetic hysteresis properties of $Mg_xCo_{1-x}Fe_2O_4$ (x ≤ 0.2) ferrites are significantly different from those of $Ca_xCo_{1-x}Fe_2O_4$, although Mg and Ca belong to the same group (II) in the periodic table. The values of M_s for $Mg_xCo_{1-x}Fe_2O_4$ ferrites are larger than that of $CoFe_2O_4$, while the values of H_c are smaller than that of $CoFe_2O_4$. For $Ca_xCo_{1-x}Fe_2O_4$ ferrites, on the other hand, M_s and H_c vary oppositely to those of $Mg_xCo_{1-x}Fe_2O_4$. The Raman spectral analyses indicate that the Mg-substituted (Ca-substituted) ferrites have higher (lower) tetrahedral Co^{2+} density than $CoFe_2O_4$. The increase of M_s for Mg_xCo_{1-x}

 Fe_2O_4 compared to $CoFe_2O_4$ is ascribed to (i) the increase of tetrahedral Co^{2+} density and (ii) the tetrahedral preference of Mg^{2+} ions.

Acknowledgment

This work was supported by Incheon National University Research Grant in 2020.

References

- M. M. Yallapu, S. F. Othman, E. T. Curtis, B. K. Gupta, M. Jaggi, and S. C. Chauhan, Biomaterials **32**, 1890 (2011).
- [2] N. Somaiah, T. V. Jayaraman, P. A. Joy, and D. Das, J. Magn. Magn. Mater. **324**, 2286 (2012).
- [3] D. Mandal and K. Mandal, J. Magn. Magn. Mater. 536, 168127 (2021).
- [4] J. S. Sagu, K. G. U. Wijayantha, and A. A. Tahir, Electrochim. Acta 246, 870 (2017).
- [5] D. Carta, M. F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, and A. Corrias, J. Phys. Chem. C 113, 8606 (2009).
- [6] K. J. Kim and J. Park, J. Sol-Gel Sci. Technol. 92, 40 (2019).
- [7] S. Nappini, E. Magnano, F. Bondino, I. Pis, A. Barla, E. Fantechi, F. Pineider, C. Sangregorio, L. Vaccari, L. Venturelli, and P. Baglioni, J. Phys. Chem. C **119**, 25529 (2015).
- [8] J. Venturini, A. M. Tonelli, T. B. Wermuth, R. Y. S. Zampiva, S. Arcaro, A. D. C. Viegas, and C. P. Bergmann, J. Magn. Magn. Mater. 482, 1 (2019).
- [9] A. L. Gurgel, A. E. Martinelli, O. L. A. Conceicao, M. M. Xavier, M. A. M. Torres, and D. M. A. Melo, J. Alloys Comp. 799, 36 (2019).
- [10] B. G. Souza, G. Figueira, M. H. Carvalho, V. Alcaraz-Gonzalez, K. E. Saldana-Flores, M. Godinho, A. J. A. Oliveira, R. H. G. A. Kiminami, L. A. M. Ruotolo, and E. A. Urquieta-Gonzalez, Mater. Chem. Phys. 257, 123741 (2021).
- [11] S. V. Bhandare, R. Kumar, A. V. Anupama, M. Mishra, R. V. Kumar, V. M. Jali, and B. Sahoo, Mater. Chem. Phys. 251, 123081 (2020).
- [12] K. J. Kim, J. Park, and J. Y. Park, J. Magn. 26, 410 (2021).
- [13] W. Bian, Z. Yang, P. Strasser, and R. Yang, J. Power Sources 250, 196 (2014).
- [14] T. Droubay and S. A. Chambers, Phys. Rev. B 64, 205414 (2001).
- [15] K. J. Kim, J. Park, and J. Y. Park, J. Magn. 27, 96 (2022).
- [16] T. Fujii, F. M. F. de Groot, G. A. Sawatzky, F. C. Voogt, T. Hibma, and K. Okada, Phys. Rev. B 59, 3195 (1999).
- [17] H. Yang, Z. Wang, L. Song, M. Zhao, J. Wang, and H. Luo, J. Phys. D: Appl. Phys. 29, 2574 (1996).

- 314 -

- [18] V. Georgiadou, V. Tangoulis, I. Arvanitidis, O. Kalogirou, and C. Dendrinou-Samara, J. Phys. Chem. C 119, 8336 (2015).
- [19] R. S. Yadav, I. Kuritka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, J. Svec, V. Enev, and M. Hajduchova, Adv. Nat. Sci.: Nanosci. Nanotechnol. 8, 045002 (2017).
- [20] I. Chamritski and G. Burns, J. Phys. Chem. B 109, 4965 (2005).
- [21] K. J. Kim, T. Y. Koh, J. Park, and J. Y. Park, J. Magn. 22, 360 (2017).
- [22] H. R. Dakua, N. Venkataramani, and S. Prasad, AIP Adv. 6, 055919 (2016).