The Magnetic Anisotropy for 2-Dimensional Transition-Metal Oxide Molecular Magnet

Key Taeck Park*

Department of Nanoelectrophysics, Kookmin University, Seoul 02707, Korea

(Received 31 January 2019, Received in final form 20 February 2019, Accepted 20 February 2019)

We investigated the magnetic anisotropy energy of 2-dimensional transition-metal (TM = Fe,Co,Ni) oxide molecular magnet using 1st principle density functional method with spin-orbit interaction. The calculation results show that the magnetic easy-axis is along the line between TM and TM atoms and the hard-axis is perpendicular to the TMO plane except NiO. Partial electron occupation of d_{yz} orbital induce the unquenched orbital momentum and LS coupling. It makes the easy-axis and hard-axis along x and z direction, respectively. For TMO, FeCoO₂ represents the largest anisotropy energy because of nearly half filled d_{yz} orbital.

Keywords : magnetic anisotropy, density functional methods, molecular magnet

이차원 전이금속 산화물 분자자성체의 자기이방성

박기택*

국민대학교 나노전자물리학과, 서울시 성북구 정릉로 77, 02707

(2019년 1월 31일 받음, 2019년 2월 20일 최종수정본 받음, 2019년 2월 20일 게재확정)

이차원 전이금속(TM = Fe,Co,Ni) 산화물 분자자성체의 자기이방성을 스핀-궤도 상호작용을 포함한 제1원리의 범밀도함수법을 이용하여 계산하였다. 그 결과, NiO를 제외하고 자기용이축은 TM-TM을 잇는 방향이었으며, 자기곤란축은 면내 수직인 방향이었다. 부분적인 d_{yz} 궤도의 전자 점유는 궤도모멘트의 소멸을 막고 스핀-궤도 상호작용을 일으키게 된다. 이러한 궤도의 전자분포 는 자기용이축과 자기곤란축을 x와 z 축 방향으로 유도하였다. 이 물질 중 d_{yz} 궤도에 전자가 반에 가깝게 차 있는 FeCoO₂가 가장 큰 궤도모멘트를 가져 가장 큰 자기이방성을 가지고 있었다.

주제어 : 자기이방성, 범밀도함수법, 분자자성체

I.서 론

전이금속으로 이루어진 결정은 정육면체 또는 비슷한 구조를 이루고 있어 자기결정이방성(magneto crystalline anisotropy) 는 그리 크지 않음을 보여 준다. 희토류금속으로 이루어진 결 정은 *f* 전자가 국재 되어 보다 큰 자기결정이방성을 보여 주 고 있다[1]. 또한 전이금속 산화물(hexagonal ferrite 등)은 국 재 된 *d* 전자와 육각형 구조로 인하여 전이금속 결정 보다는 큰 자기결정이방성을 보여준다[1].

자기결정이방성에 큰 영향을 주는 것은 구조와 원자의 국 재성이다. 이러한 조건을 만족시키는 물질로 저차원의 전이금

© The Korean Magnetics Society. All rights reserved. *Corresponding author: Tel: +82-2-910-4755, Fax: +82-2-910-4728, e-mail: key@kookmin.ac.kr 속산화물 분자자성체는 원하는 저차원의 구조를 만들 수 있 고, 또한 전자도 국재되어 있어 큰 자기이방성을 보일 수 있 다. 이차원 NiO 분자자성체는 평면구조로 인하여 큰 자기이 방성 에너지를 보여주었다[2]. 그리고 Ni-O-Ni 각도에 따라 자기이방성 에너지의 차이를 나타내었다[2]. 이러한 평면 이 차원 분자자성체를 전이금속종류에 따라 어떤 자기적 성질 및 자기이방성을 보이는지 제1원리의 계산으로 이해하려 한다.

저번의 NiO 분자자성체[2]와 같이 자기 특성을 이해하기 위해 배위자 원자(ligand atoms)를 제거한 이차원 평면 전이 금속(Co, Fe, Ni) 분자자성체의 제1원리의 계산을 하였다. 배 위자 원자를 포함한 실제 전이금속 분자자성체와는 배위자 원 자로 인한 다른 자기적 특성이 예상 되지만[3] 전이금속 차 이에 의한 자기적 특성을 이해하기 위해 단순한 정사각형 평 면 구조의 모델 계산을 하여 큰 자기이방성을 나타내는 물질 - 14 -

을 합성하는 방향을 제시하려 한다.

전이금속 원자에 따른 자기적 특성을 알기 위해 스핀 방향 에 따른 총에너지를 계산하여 전이금속 원자 간의 자기적 상 호작용과 자기이방성을 연구하였다. 이러한 자기이방성을 상 대론적 스핀-궤도 결합작용(spin-orbit coupling)을 포함한 제 1원리의 범밀도함수 방법(density functional method)을 통하 여 얻을 수 있었다.

II. 분자자성체구조와 계산방법

이차원 구조 분자자성체의 기본이 되는 배위자 원자를 배 제한 정사각형 평면 구조를 계산하였다. 전이금속(TM)은 Fe, Co, Ni 원자이며, Fe₂O₂, Co₂O₂, Ni₂O₂, FeCoO₂, CoNiO₂ 의 평면 구조를 계산하였다. 비교하기 위해 TM-O 사이의 거 리는 2 Å으로 고정하였다. Fig. 1에 분자 구조와 좌표를 표시 하였다.

이 계산은 범밀도함수법(density functional method)[4]에 기반을 두고 국소스핀밀도근사(local spin density approximation) 하에 계산하였으며, linear combination of localized pseudoatomic orbitals(LCPAO) 방법으로 OpenMX 패키지[5-7]를 이용하였다. 전이금속(TM)원자와 산소원자의 pseudo-potential 의 컷오프(cutoff) 반경은 7.0, 5.0 a.u.로 하였으며 수치적분에 에너지 컷오프는 200 Ry로 하였다. 기저함수는 전이금속의 경 우 *s*는 3개 *p*, *d*는 2개, *f*는 1개로 하였으며, 산소원자는 *s*, *p*, 2개 *d* 1개로 계산하였다. exchange-correlation energy는 Ceperley-Alder local spin density approximation 방법[8,9] 을 이용하였다.

Fig. 1. (Color online) Structure of TMO and coordinate axes.

III. 결과 및 논의

자기이방성에너지를 조사하기 위해 전이금속 원자의 스핀 방향을 같은 방향을 향하도록 구속조건을 유지하며 스핀 방 향에 따른 총에너지를 계산하였다. 스핀 방향에 따른 스핀-궤 도 상호작용(spin-orbit interaction)을 포함한 상대론적 계산으 로 총에너지를 구하였다.

그 결과 TMO 평면에서 NiO를 제외한 모든 물질이 TM-TM을 잇는 대각선 방향의 스핀배열이 가장 낮은 총에너지를 나타내었다. Fig. 1에서 x 방향으로 표시하였으며 자화용이축 (magnetic easy-axis)이다. 평면에 수직방향이 가장 높은 에너 지를 보여주었다. z 축이며 자화곤란축(hard-axis) 이다. Fig. 1의 y 축은 자기중간축(medium-axis)이다. 저번의 NiO[2]에서 는 자화용이축, 곤란축, 중간축이 각각 y, z, x 방향이다.

스핀방향과 결정축과의 각도에 따른 자기이방성에너지는 비 대각항을 제외하면 다음과 같이 표현된다[10,11].

$$E(\theta, \phi) = J_{xx}S_xS_x + J_{yy}S_yS_y + J_{zz}S_zS_z$$
(1)

$$S_x = S\sin\theta\cos\phi, \ S_y = S\sin\theta\sin\phi, \ S_z = S\cos\theta$$
(2)

x, y, z 축은 자기용이방향, 자기중간방향, 자기곤란방향을 표시하며, Æ 구면좌표에서 z 축과의 각도, ∅는 xy 평면에서 x 축과의 각도이다. 자기용이축과 자기곤란축의 자기장벽은 D₁ = J_{zz} - J_{xx}이고, 자기용이축과 자기중간축의 자기장벽은 D₂ = J_{yy} - J_{xx}이다.

Fig. 2. The magnetic energy barrier D_1 and D_2 .

Table I. The energy barrier parameters and total orbital moments of TMO.

	$D_1 ({\rm cm}^{-1})$	$D_2 ({\rm cm}^{-1})$	Orbital moment (μ_B)
Fe	43	7	0.36
FeCo	182	141	1.02
Co	89	16	0.91
CoNi	80	50	0.77
Ni	34	7	0.56

Table I에 자기장벽 D_1 과 D_2 값을 전이금속 종류에 따라 표시하였고, Fig. I에 그래프로 표시하였다. 자기이방성에너지 (D_1)는 FeCoO₂에서 가장 큰 값을 나타내고 있으며 *d* 궤도 전자수가 증가함에 따라 감소하는 것을 보여준다. 총각운동량 (orbital moment)도 FeCoO₂가 가장 큰 값을 보여주었다.

TMO의 경우 전이금속원자는 +2가의 이온가를 가져 3*d*에 너지준위에 각각 6개(Fe)부터 8개(Ni)의 전자가 차게 된다. Hund 법칙에 의해 5개의 전자가 up-spin 상태를 모두 채우 게 되고, 최외각 남은 1개(Fe), 2개(Co), 3개(Ni)의 전자가 down-spin의 준위를 채우게 되어 4(Fe), 3(co), 2(Ni) μ_B의 스핀모멘트 값을 가지게 된다. 전이금속원자의 경우 궤도모멘 트는 Hund의 법칙에 따라 Co, Ni이 가장 큰 값이 되나, 벌 크의 경우 궤도각운동량은 대부분 소멸(quenching) 된다. 자 성분자의 경우 스핀-궤도결합(LS coupling)과 이차원 결정장 (crystal field)의 영향으로 원자인 경우와 같이 Co, Ni은 작 지 않은 궤도모멘트 값을 가지게 된다. 계산된 각운동량 결 과를 Table I에 표시하였다. 전이금속 산화물의 자기 이방성 은 주로 스핀-궤도 결합에 의해 발생한다. 스핀-스핀 쌍극자 상호작용(dipole-dipole interaction)은 이에 비해 무시할 정도 로 작다.

Table II에 전이금속 d 궤도의 전자수와 궤도에 따른 각운

Table II. The electron occupation number and angular momentum of TMO *d* orbitals.

	d_{xy}	d_{yz}	L_{xy} (μ_B)	L_{yz} (μ_B)
Fe	0.11	0.14	0.00	0.09
FeCo	0.11(Fe) 0.12(Co)	0.37(Fe) 0.49(Co)	0.00(Fe) 0.00(Co)	0.23(Fe) 0.26(Co)
Со	0.13	0.65	0.01	0.22
CoNi	0.29(Co) 0.86(Ni)	0.61(Co) 0.76(Ni)	0.02(Co) 0.04(Ni)	0.18(Co) 0.14(Ni)
Ni	0.67	0.71	0.13	0.01

동량을 표시하였다. 궤도의 각운동량은 d 궤도에 부분적으로 전자가 차 있을 때(특히 1/2) 궤도각운동량이 소멸되지 않고 작지 않은 값을 가진다. FeCoO₂의 경우 yz 궤도에 FeO 또 는 CoO 경우보다 반(half filled)에 가까운 전자가 차 있음을 보여주고, xy 궤도는 변함없이 작은 수의 전자가 차 있다. 이 러한 전자 분포로 인해 yz 궤도의 각운동량은 FeO나 CoO에 비해 큰 값을 보여준다. 소멸되지 않은 각운동량은 스핀-궤도 결합에 의해 FeCoO₂에서 자기이방성(D₁)을 크게 증가시킨다. 또한 yz 각운동량이 자기용이축은 x 축 방향을 이룬다. 이러 한 궤도 전자의 yz 전자의 점유로 NiO를 제외하고 전부 자 기용이축이 x 축이다. NiO는 xy 궤도의 점유률이 반에 가깝 고, yz는 더 많은 전자가 차 있어 xy 궤도의 각운동량이 소 멸되지 않아 자기용이축이 나머지 TMO와 달리 y 축이 자기 용이축을 이룬다.

이러한 각운동량과 스핀-궤도결합의 관계를 Fig. 3에 보여 준다. TMO의 스핀모멘트는 FeO에서 NiO로 가면 감소한다. 궤도모멘트는 FeO와 NiO가 가장 작고 FeCoO2가 가장 큰 값을 가진다. 이러한 두 값의 단순한 곱이 Fig. 3의 세 번째 그래프이다. 일반적으로 스핀-궤도결합에너지는 *W* = $\lambda \vec{L} \cdot \vec{S}$ 로 표현되다. Fig. 3의 세 번째 그래프는 이러한 스핀, 궤도모멘 트 곱의 경향을 Fig. 2의 자기용이축과 자기곤란축의 에너지 장벽 *D*₁ 그래프와 유사한 경향을 잘 보여준다.

IV. 결 론

평면 이차원 전이금속산화물 FeO, CoO, NiO, FeCoO₂, CoNiO₂ 자기분자의 자기이방성을 비교하기 위해 제1원리의 전자구조 계산을 하였다. 그 결과 NiO를 제외한 TMO는 전 이금속을 잇는 방향(x 방향)이 자기용이축이었으며, 평면에 수 직인 방향이 자기곤란축(z 방향)이었다. 이러한 이유는 yz 궤 도의 부분적으로 차 있는 전자로 인해 각운동량이 소멸되지 않고 남아 스핀-궤도결합을 일으키는 원인이었다.

Fig. 3. (Color online) Spin, orbital moment and product of spin and orbital of TMO.

가장 큰 자기이방성에너지를 가지는 물질은 FeCoO2이었으며, 다음은 CoO였다. 이러한 원인은 FeCoO2는 다른 TMO 에 비해 yz 궤도에 전자가 반(half-filled) 정도 점유하여 큰 궤도운동량을 유발하여 스핀-궤도결합을 하는 이유이다.

이러한 결과로 자기이방성이 큰 분자자성체를 만들기 위해 서는 각 궤도의 반에 가까운 전자점유를 유지하는 원소, 분 자구조와 배위전자 배치를 만들 필요가 있다.

References

 S.Chikazumi, Physics of Ferromagnetism 2nd Ed., Oxford (1997). 이차원 전이금속 산화물 분자자성체의 자기이방성 - 박기택

- [2] K. T. Park, J. Korean Magn. Soc. 28, 152 (2018).
- [3] N. Kirchaner, Analysis of Magnetic Excitations in Molecular Nanomagnets, PhD. Thesis (2012).
- [4] P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).
- [5] www.openmx-square.org.
- [6] T. Ozaki, Phys. Rev. B 67, 155108 (2003).
- [7] T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004).
- [8] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
- [9] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
- [10] M. R. Pederson, J. Kortus, and S. N. Khanna, Molecular Magnets 91, 7149 (2002).
- [11] J. Kortus, M. R. Pederson, T. Baruah, N. Bernstein, and C. S. Hellberg, Polyhedron 22, 1871 (2002).