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I estimated magnetometric demagnetization factors of hollow cylinders. Demagnetization factors of extreme

hollow cylinders are obtained analytically, and axial demagnetization factors of finite hollow cylinders are cal-

culated numerically to find that the approximation designed for the axial demagnetization factors [Nam et al.,

J. Appl. Phys. 111, 07E347 (2012)] is valid as long as the hollow ratio is not close to one, depending on suscep-

tibility and the aspect ratio. I also discuss the transverse demagnetization factor and the sum rule of the demag-

netization factors for a finite hollow cylinder. Dependence on susceptibility being related to the hollow ratio is a

feature of magnetometric demagnetization factors of finite hollow cylinders and hollow spheres. A thin closed

hollow shape might be the better candidate than open hollow shapes if one wants to maximize susceptibility

dependence of the magnetometric demagnetization factor of magnetic material. 
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1. Introduction

The ‘demagnetization factor’ is a convenient and useful
concept. The demagnetizing field Hd in a diamagnetic or
paramagnetic body of a uniform scalar susceptibility χ,
generated with the magnetization M when a uniform
external magnetic field H0 is applied, can be simply
expressed as Hd = –ÑM (thus total magnetic field H = H0

+ Hd). The demagnetization tensor Ñ is diagonalized if
three coordinate axes x, y, and z are chosen along the
principal axes, and its eigenvalues are three demagneti-
zation factors Nx, Ny, and Nz corresponding to the axes
[1]. Once the demagnetization factors are calculated for a
base set of geometric shapes, they can be applied to any
diamagnetic or paramagnetic bodies of a geometric shape
in that set because they depend only on the geometric
shape and the susceptibility χ. For χ = 0, further, they
obey the famous sum rule,

Nx + Ny + Nz = 1 (1)

which means that at least one demagnetization factor can
be easily obtained. This rule was rigorously proven for
magnetometric demagnetization factors [2, 3]. A magneto-

metric demagnetization factor in the x direction is defined
as  where  denotes average over
the body volume and is corresponding to magnetometric
measurement which enables the magnetic moment of the
entire body to be obtained [4].

The magnetometric demagnetization factors for long
hollow cylinders and hollow spheres are interesting
because they can be greatly dependent on susceptibility. If
an infinitely long hollow cylinder has outer radius R and
inner radius r = αR with a uniform scalar susceptibility χ,
its transverse magnetometric demagnetization factor [5] is

(2)

When α, called the hollow ratio, is close to 1, since
, Nt can approach either one or zero, i.e., the

range of Nt depending on χ is almost the largest range
that a demagnetization factor can have. Likewise, the
magnetometric demagnetization factor of a hollow sphere
with outer radius R and inner radius r = αR [6],

(3)

has a range with respect to χ from zero to one at the limit
α → 1. Moreover, the sum of its demagnetization factors
is

Nx = Hd x,〈 〉– / Mx〈 〉 …〈 〉
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(4)

whose infimum and supremum are 0 and 3, respectively.
The sum can be largely deviated from one if α and χ are
far from zero.

Magnetic material hollow cylinders can be used for
superconducting [7, 8] and nanoparticle research [9], but
calculations of their demagnetization factors are limited
although there are plenty of literature for demagnetization
factors of solid cylinders [2, 10-13]. For the transverse
factor, equation (2) is the only published analytical
calculation result, to my knowledge. For the axial factor,
exact analytical expression is developed for zero suscepti-
bility [14, 15] (the latter reference is more useful.), and an
approximate relation between the axial demagnetization
factor for the hollow cylinder  and that for the
solid cylinder  [9],

(5)

which was compared with results from the analytical
expression but has not been confirmed for nonzero
susceptibility. Summarizing the above, there are still no
reliable values of the transverse demagnetization factors
of the finite hollow cylinder and the axial demagneti-
zation factors for nonzero susceptibility.

In this paper, I first find the magnetometric de-
magnetization factors of extremely long or short hollow
cylinders. Next, accuracy of the approximation (5) is
investigated, and an approximate form is devised for
transverse magnetometric demagnetization factors of
finite hollow cylinders. I also approximate the sum of
magnetometric demagnetization for finite hollow cylinders.
Finally, I discuss comparison with the magnetometric
demagnetization factor of the hollow sphere.

2. Analysis for Extreme Hollow Cylinders

According to the exact analytical result [15], de-
magnetization factors for hollow cylinders with zero
susceptibility are independent of the hollow ratio α when
the cylinders are infinitely long or extremely short. The
axial demagnetization factor goes to zero as the length
becomes infinite, while its extremely short limit is one.
This also means that from the sum rule (1), the transverse
demagnetization factor is one for the infinitely long limit
and zero for the extremely short limit. However, all these
are under the zero susceptibility condition. For nonzero
susceptibility, the transverse magnetometric demagneti-
zation factor for an infinitely long cylinder follows
equation (2). So it is necessary to check the others.

It is possible to find demagnetization factors of hollow
cylinders under the extreme geometric conditions by
estimating the fictitious surface magnetic poles. Inside a
paramagnetic or diamagnetic body, there are no volume
magnetic poles, defined as , since . Thus
the magnetic field inside the body is determined by the
external magnetic field and the surface magnetic poles.
For an infinitely long hollow cylinder, whose top and
bottom surfaces are ignored, only the magnetic poles on
its inner and outer side surfaces need to be found, which
must be zero under a uniform axial external magnetic
field due to the symmetry along the axis. Consequently,
their axial demagnetization factors are zero regardless of
susceptibility. For a flat ring (an extremely short hollow
cylinder), whose side surfaces are ignored, what matter
are its top and bottom surfaces, which determine the
magnetization of the body because the surface magnetic
poles are defined as  (n is the unit vector
perpendicular to the surface). When a uniform transverse
external magnetic field is applied to a flat ring, the
magnetic poles on the top and bottom surfaces become
zero because the magnetic poles on the top surface must
be the same as those on the bottom surface, and therefore
the transverse demagnetization factor is zero even if the
susceptibility is not zero. Under a uniform axial external
magnetic field, the demagnetizing field Hd in a flat ring
equals to –M, and therefore the axial demagnetization
factor is one.

The above arguments can be rigorously confirmed by
solving the Laplace equations in cylindrical coordinates
(ρ, θ, z). For problems with a uniform axial external
magnetic field, the Laplace equation of a vector potential
A is acquirable from the Coulomb gauge ( ) and

 with no free current condition, and the vector
potential can be set as

(6)

with help of the axial symmetry [12,16]. Here H0 is
strength of the uniform external magnetic field, and  is
the azimuthal unit vector. Likewise, for the problems with
a uniform transverse external magnetic field, the Laplace
equation of a scalar potential φ can be obtained with

, , and no free current condition, and
the scalar potential should be set as

φ = −H0 f (ρ, z)cosθ (7)

Boundary conditions are generated by the continuity of
A, the continuity of the normal component of B, and the
continuity of the tangential component of H, and they can
be applied only to the side surfaces for infinitely long
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hollow cylinders and only to the top and bottom surfaces
for flat rings. Also, f (ρ, z) must be finite at ρ = 0 and f (ρ,
z) → ρ as ρ→ ∞ or z → ∞. Solving the Laplace equations
for hollow cylinders with extreme length is not a difficult
task because f (ρ, z) = f (ρ) inside the cylinders, and I just
write down the solutions of f (ρ) in the hollow cylinder
body region. The solution for the infinitely long cylinder
under a uniform axial external magnetic field is

(8)

where r is the inner radius, and for the flat ring, the
solution is

(9)

either under a uniform transverse external magnetic field
or under a uniform axial external magnetic field although
it gives different results depending on whether it goes into
(6) or (7). These solutions give the same magnetometric
demagnetization factors as those obtained from the
surface magnetic poles.

Now we can obtain the sum rules of the magnetometric
demagnetization factors for infinitely long hollow cylinders
and flat rings. Because Nx = Ny = Nt due to the axial
symmetry, setting Nz = Na, we get, from (2) and the above
results,

(10)

for infinitely long hollow cylinders and

(11)

for flat rings. While the sum rule for flat rings is the same
with that of zero susceptibility (1), the sum rule for
infinitely long hollow cylinders is variable in α and χ,
and its infimum and supremum are 0 and 2, respectively.
The supremum, 2 is one less than that of the sum of the
magnetometric demagnetization factors for hollow spheres,
but both the sums (4) and (10) reach its suprema when
χ = −1 and α → 1. The magnetometric demagnetization
factors of infinitely long hollow cylinders also disagree
with the sum rule of the magnetometric demagnetization
factors for solid cylinders [12],

(12)

where

, χ > 0
(13)

, χ < 0

and β is the aspect ratio L/2R (L: length of cylinder, R:
radius) and C(β ) is a coefficient. This suggests that the
sum rule (12) should not be applied to finite hollow
cylinders as well.

3. Approximation for Finite Hollow 
Cylinders

The first task is to ascertain whether the approximation
(5), for the axial demagnetization factor of a hollow
cylinder (see its schematic geometry in the inset of Figure
1), is valid for nonzero susceptibility, but before then, it is
necessary to check the dependence of its accuracy for
zero susceptibility on the hollow ratio α and the aspect
ratio β. My result for infinitely long hollow cylinders
shows that the difference between the values from the
approximation (5) and the exact values for hollow
cylinders must be zero at the long cylinder limit. The
exact analytical result of axial demagnetization factor for
zero susceptibility hollow cylinders [15] shows asymptotic
behavior at the long cylinder limit (β → ∞) as

(14)

The difference between the approximation (5) and the
analytical expression has order of β −1 when the hollow
cylinder is long. So its absolute error converges to zero as
β → ∞, but its relative error does not. If we define the
relative error of the approximation as

(15)

then its limit for infinite β and zero susceptibility is

(16)

This limit reaches its supremum 1 as α → 1. ηapprox for
β → 0 limit also approaches 1 as α → 1 since all the
demagnetization factors in (15) become one. From the
asymptotic behavior of the analytical expression [15] near
α = 1, , one can find that
ηapprox for zero susceptibility always converges to 1 (i.e.,
100 %) as α → 1, regardless of β. Since ηapprox must
converge to 0 as α → 0, its dependence on α appears to
be more important than its dependence on β.

I performed a numerical calculation of the axial
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magnetometric demagnetization factors of hollow cylinders
by using the Vuillermet’s numerical integral method [17],
and its results are shown in Tables 1-3. My program is
written in Fortran with aid of LAPACK [18]. The number
of volume elements amounts to (1 – α) × β × 270,000
although the actual matrix size is much smaller thanks to
the axial symmetry. Numerical errors of my results depend
on degree of discretization and the LAPACK function’s
error. The discretization error can be obtained by variation
of discretization, and the maximum numerical errors of
my results for χ = −0.5, χ = 1, and χ = 100 were estimated
below 0.6 %, 0.4 %, and 0.1 %, respectively. I tested my

zero susceptibility calculation with the parameter χ =
0.0001, though its results are not shown here, by
comparing it with the exact analytical calculation [15],
and the maximum error of my results was found to be less
than 0.5 %.

From my numerical results and the analytical expression
for χ = 0 [15], I estimated the relative errors of the
approximation ηapprox. I used the axial magnetometric
demagnetization factor values of solid cylinders numeri-
cally calculated previously [13] to calculate values from
the approximation (5). Figure 1 shows hollow ratio
dependence of the maximum ηapprox among values for

Table 1. Numerically calculated axial magnetometric demagnetization factors of hollow cylinders of susceptibility χ = −0.5, for var-

ious hollow ratios α and aspect ratios β.

α β = 2 3 5 10 20 50

0.1 1.939E-1 1.383E-1 8.792E-2 4.603E-2 2.357E-2 9.569E-3

0.2 1.865E-1 1.329E-1 8.447E-2 4.420E-2 2.263E-2 9.183E-3

0.3 1.753E-1 1.249E-1 7.928E-2 4.145E-2 2.121E-2 8.605E-3

0.4 1.610E-1 1.146E-1 7.263E-2 3.793E-2 1.939E-2 7.864E-3

0.5 1.439E-1 1.022E-1 6.465E-2 3.370E-2 1.722E-2 6.978E-3

0.6 1.239E-1 8.773E-2 5.539E-2 2.881E-2 1.470E-2 5.955E-3

0.7 1.008E-1 7.118E-2 4.480E-2 2.326E-2 1.185E-2 4.796E-3

0.8 7.280E-2 5.218E-2 3.277E-2 1.701E-2 8.652E-3 3.497E-3

0.9 3.816E-2 2.916E-2 1.859E-2 9.710E-3 4.925E-3 1.987E-3

Table 2. Numerically calculated axial magnetometric demagnetization factors of hollow cylinders of susceptibility χ = 1, for various

hollow ratios α and aspect ratios β.

α β = 2 3 5 10 20 50

0.1 1.652E-1 1.141E-1 6.988E-2 3.525E-2 1.766E-2 7.067E-3

0.2 1.596E-1 1.103E-1 6.760E-2 3.413E-2 1.711E-2 6.848E-3

0.3 1.507E-1 1.043E-1 6.400E-2 3.235E-2 1.623E-2 6.499E-3

0.4 1.390E-1 9.629E-2 5.918E-2 2.996E-2 1.504E-2 6.028E-3

0.5 1.247E-1 8.641E-2 5.319E-2 2.698E-2 1.356E-2 5.439E-3

0.6 1.077E-1 7.467E-2 4.604E-2 2.340E-2 1.178E-2 4.727E-3

0.7 8.788E-2 6.099E-2 3.766E-2 1.919E-2 9.669E-3 3.884E-3

0.8 6.472E-2 4.507E-2 2.790E-2 1.427E-2 7.202E-3 2.896E-3

0.9 3.576E-2 2.599E-2 1.618E-2 8.351E-3 4.219E-3 1.698E-3

Table 3. Numerically calculated axial magnetometric demagnetization factors of hollow cylinders of susceptibility χ = 100, for var-

ious hollow ratios α and aspect ratios β.

α β = 2 3 5 10 20 50

0.1 1.401E-1 9.192E-2 5.081E-2 2.084E-2 8.187E-3 2.546E-3

0.2 1.359E-1 8.915E-2 4.927E-2 2.023E-2 7.964E-3 2.486E-3

0.3 1.290E-1 8.460E-2 4.676E-2 1.922E-2 7.592E-3 2.387E-3

0.4 1.194E-1 7.825E-2 4.325E-2 1.781E-2 7.072E-3 2.246E-3

0.5 1.071E-1 7.013E-2 3.875E-2 1.600E-2 6.401E-3 2.062E-3

0.6 9.211E-2 6.020E-2 3.326E-2 1.379E-2 5.577E-3 1.831E-3

0.7 7.429E-2 4.845E-2 2.676E-2 1.117E-2 4.594E-3 1.548E-3

0.8 5.387E-2 3.476E-2 1.923E-2 8.135E-3 3.438E-3 1.200E-3

0.9 2.934E-2 1.903E-2 1.057E-2 4.624E-3 2.055E-3 7.550E-4
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various aspect ratios, which rapidly increases near α = 1
as expected while it reduces small near α = 0 (implying
our numerical calculation approaches that of solid cylinder
of Ref. 13). When α < 0.6, every ηapprox appears below
about 10 %. So I restricted α ≤ 0.7 or α ≤ 0.5 and found
the maximum ηapprox value in that α range for each aspect

ratio and susceptibility, whose results are shown in Fig. 2.
Accuracy of the approximation (5) looks decreased when
χ is far from zero and β is large. If the maximum ηapprox

has to be less than 10 %, an example of the appropriate
region of (α, β, χ) is (α ≤ 0.7, 2 ≤ β ≤ 20, −0.5 ≤ χ ≤
100). If ηapprox below 5 % is desired, one can restrict the
region of (α, β, χ) as (α ≤ 0.5, 2 ≤ β ≤ 20, and −0.5 ≤ χ ≤
100) or (α ≤ 0.5, 2 ≤ β ≤ 50, and −0.5 ≤ χ ≤ 1). Therefore,
it is evident that the approximation (5) can be valid even
for nonzero susceptibility, but in certain accuracy with
appropriate conditions of α, β, and χ.

The next task is to estimate an approximate form for
transverse magnetometric demagnetization factors of finite
hollow cylinders. Since 0 < α < 1, it is possible to set

(17)

where  for α = 0, and  can be
obtained from previous literature [12, 13]. Applying the
sum rule (1) for χ = 0, one can get

. (18)

 and  can be obtained from the
analytical expression [15]. However, if one applies the
demagnetization factors of extreme hollow cylinders
discussed in the previous section to (17), the above
function does not satisfy the limit β → ∞ although it does
the limit β → 0. If β is very large, another term should be
added to h(α, β, χ) by using the equation (2) for the
transverse magnetometric demagnetization factor of an
infinitely long hollow cylinder.

(19)

Looking at (18) and (19), I propose an approximation of
h(α, β, χ) as

(20)

where g(β) = 0 at the limit β → 0 and g(β) = 1 at the
limit β → ∞. This approximation is exact when χ = 0 or
α = 0 or β is at extremes. Higher order terms of α and χ
are ignored in (20), but it is highly probable that higher
orders of α less influence the result since 0 < α < 1.

 and  appear to be monotonous
functions of β, and the analytical result [15] shows that

 is a monotonous function of β. This is
natural because  and the de-
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range of (a) 0 ≤ α ≤ 0.7 and (b) 0 ≤ α ≤ 0.5, for each aspect

ratio β and susceptibility χ. Those for χ = 0 were calculated

with values from the formula of Ref. [9].
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magnetizing field must continuously increase or decrease

as β increases. Likewise, it is reasonable to presume that

 and  are monotonous

functions of β, and therefore g(β) is approximately

monotonous since a linear combination of monotonous

functions is monotonous. The last term in the approxi-

mation (20) is therefore not dominant since 0 < α < 1, 0 <

g(β) < 1, and χ is close to 0. Although accuracy of the

approximation (20) still depends on g(β), I stop here and

leave its exact form for future work. Nevertheless,

qualitative behavior of  can be found, and

it decreases as χ increases, like , but

whether it is a decreasing function of α or not depends on

χ, unlike .

Combining (5), (12), (17), and (20) gives an

approximate sum rule of magnetometric demagnetization

factors of a finite hollow cylinder,

(21)

where  is defined in (13). Note that this approxi-

mation is valid when χ is close to 0. Because C(β) in (13)

is so small [12],  is negligible if absolute value of

χ is small. According to the numerical result [13],

 is minus when χ < 0, and plus

when χ > 0. Therefore, the sum rule (21) is larger than

one if χ > 0, and smaller than one if χ < 0, and its

discrepancy from one increases as α increases. It seems

that sum rules of magnetometric demagnetization factors

for hollow geometries generally depend on susceptibility

and the hollow ratio.

Now let’s compare χ dependence of magnetometric

demagnetization factors of hollow cylinders and their sum.

When α increases and β is far from zero, χ dependence of

the transverse magnetometric demagnetization factor will

probably increase because the last term in (20) appears to

reinforce χ dependence of  by 

in (17), so does χ’s dependence on the sum of the

magnetometric demagnetization factors. This χ dependence

related to α is also the feature of the magnetometric

demagnetization factor of a hollow sphere. Conversely,

the χ dependence of the axial magnetometric demagneti-

zation factor reduces as α increases so long as the

cylinder is finite, which can be found from Tables 1-3 or

if one combines the approximation (5) and the numerical

values of  [13]. Due to behavior of g(β), the χ

dependence related to α of the transverse magnetometric

demagnetization factor is more prominent for longer

hollow cylinders. As β → ∞, the magnetic flux passing

through the hollow region and the side surfaces increases

and the magnet flux passing through the top and the

bottom surfaces decreases. This appears related to the fact

that χ dependence connected with α of the transverse

magnetometric demagnetization factor of the long hollow

cylinder is similar to that of the hollow sphere. Therefore,

if one wants to maximize susceptibility dependence of the

magnetometric demagnetization factor of magnetic material,

closed hollow shapes are probably better than open

hollow shapes and the thickness should be very small.

4. Conclusion

I estimated magnetometric demagnetization factors of

hollow cylinders. The axial demagnetization factor of an

infinitely long hollow cylinder and the transverse

demagnetization factor of a flat ring are zero while the

axial demagnetization factor of a flat ring is one, regard-

less of the hollow ratio, α. I calculated the axial de-

magnetization factors of finite hollow cylinders numeri-

cally to find that the approximation designed for them is

valid as long as the hollow ratio is not close to one,

depending on susceptibility and the aspect ratio. I devised

an approximate form of the transverse demagnetization

factor and approximated the sum rule of the demagneti-

zation factors for a finite hollow cylinder. Their susceptibility

dependence is closely associated with the hollow ratio.

Dependence on susceptibility being related to the

hollow ratio is a feature of the magnetometric demagneti-

zation factor of the hollow sphere. This feature is more

prominent for transverse magnetometric demagnetization

factors of longer hollow cylinders. Comparison of magneto-

metric demagnetization factors for hollow cylinders and

hollow spheres reveals that a thin closed hollow shape

might be the best candidate if one wants to maximize

susceptibility dependence of the magnetometric demagneti-

zation factor of magnetic material.
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