Magnetic & Crystal structure studies with neutron powder diffraction

2016. 5.27

Seongsu Lee KAERI, Korea

- Introduction Neutron diffraction?
- Some examples
- Hexagonal Manganite
- Magnetic structure change under external magnetic field
- Incommensurate magnetic structure

HANARO 30MW (High Flux Advanced Neutron Application Reactor)

Reactor Hall: thermal neutron

Location of HANARO Incheon International Airport Secul Daejeon Gyeongju Gwangi Busan Jeju Island http://www.kaeri.re.kr

Cold neutron Guard Hall: cold neutron

•13 in operation

(HRPD, FCD, RSI, NRF, Bio-D ENF, PGAA / 18M & 40M SANS, REF-V, G-TS, DC-ToF, Cold-TAS, KIST-USANS)

•4 under commissioning

(Th-TAS, Bio-REF, C-PGAA, C-NDP)

•Bio-C under installation

Dromot Commo Imaging, Cold Neutron Padiography in planning

HRPD & XRD

seongsulee@kaeri.re.kr

Part	Characteristic					
Monochromator Wavelength Resolution Neutron Flux at sample	Ge(331),Ge(335) 1.836 Å ⊿d/d > 2.0% ~ 3.5 x 10 ⁶ n/cm ² /sec					
Multi-detectors PSD (position sensitive detectors) Take off angle	32 He-3 proportional counters (tube: dia. 50mm) 1-D (100mm 200mm and 200mm 100mm), 2-D (200mm 200mm) 90°					
Collimators	-In-pile RSC (rotating shutter collimator) : 20', 30', open(~50') -FCU (first collimator unit) : 6', 10', 20', open(~50') -Second collimator : 30', open					
 -Auto sample changer for RT -High Temp. vacuum chamber : up to 950 K -Low Temp. CCR : RT to 4.5 K -Magnetic Field : Max. 0.8 T, Electromagnet Max. 500G, Helmholtz Coil -Pressure cell (up to 10 kbar) -Cryo-furance (20K to 800K) -Dilution refrigerator & Super conducting magnet : coming soon 						
ner 2. High Tem	p. (2005) 3. Low Temp. (~12 K)					

http://www.kaeri.re.kr

nergy ute

Sample environments of HRPD

NAME

Auto sample changer

High Temp. Furnace

Low Temp. CCR

Pressure cell

Cryo-furnace

Super conducting magnet

Dilution refrigerator

Sample condition

Room temperature (12 samples)

Up to 1000 K, up to 2000 K

From 4 K to 300 K

Up to 10 Kbar

20 K to 800 K

1.5 K & 10 tesla(1.5K+10Tesla+10kbar)

Down to 50 mK

Auto sample changer

4K CCR

http://www.kaeri.re.kr

Energy itute

User Supports :proposal based system

Website: hanaro4u.kaeri.re.kr E-mail: useroffice@kaeri.re.kr

http://www.kaeri.re.kr

Korea Atomic Energy

KAERI

- Introduction Neutron diffraction?
- Some examples
- Hexagonal Manganite
- Magnetic structure change under external magnetic field
- Incommensurate magnetic structure

Why Neutron Diffraction ?

- → Neutron diffraction issues inside story
 → Simultaneously understand Crystal & Magnetic Structure
 To see light element(s)
 - Lithium Battery, Oxides, ...
 - To distinguish neighbor element(s) or isotopes
 - Substitution of TM or RE ions, H/D substitution ...

To see bulk properties

- Inter-grain reactions in composite materials, ...

To see spin (magnetic) structure

- FM, AFM, Magnetic Incomensurate Structure, ...

To see sample in a container with thick wall

- various sample environments (low T, high T, pressure, magnetic field, ...)

KAERI Research Institute

Simplified Powder Diffractogram

Crystal & Magnetic structure

Crystal structure -Unit cell information -atomic position -bond length and angle -bond valence sum -thermal motion information -hidden structure -local structure

Magnetic structure -spin configuration -magnetic moment -short range ordering -order-disorder -spin-lattice coupling

KAERI Re

Korea Atomic Energy Research Institute

http://www.kaeri.re.kr

Magnetic scattering in LaMnO₃ - 🗆 × WinPLOTR [LLB Saclay - LCSIM Rennes] File <u>Plot</u> Options Points Selection X space Calculations Rietveld plot options Text External applications Help ➡▶◀�₩X�� Fit Per FP Pot Ŧ **≌|⊟**| ٠ LaMnO₃: magnetic scattering 1000 Difference: 50K -150K 800 Intensity (a.u.) 600 Magnetic reflections 400 Thermal expansion 200

Contents

- Introduction Neutron diffraction?
- Some examples
- Hexagonal Manganite
- For magnet materials(Neutron irradiation studies)
- Incommensurate magnetic structure

1st example for neutron powder diffraction

Long rang magnetic ordering : coupling between magnetic order and crystal order in hexagonal manganite

Why are hexagonal manganite interesting?

Triangular lattice of Mn moments: geometrical frustration effects

Mutiferroic system

Introduction

Ferroelectric

FIG. 4. Gate voltage dependences of the C-V characteristics at 86 K ($C_o = 54 \text{ nF/cm}^2$).

Antiferromagnetic

Wo-chul Yi et al. Appl. Phys. Lett., (1998)

T.Katsufuji et al., PRB (2001)

KAERI Research Institute

Rare-earth Manganites RMnO₃ Phase

Large ionic radius (R= La, Pr, Nd, Sm, Eu, Gd *etc.*) : Orthorhombic (Pbnm) Small ionic radius (R= Ho, Eu, Tm, Yb, Lu, Sc, and Y): Hexagonal(P6₃cm)

Ferroelectric and Antiferromagnetic transitions of hexagonal manganites

	antiferromagnetic ordering temperature (K)	ferroelectric ordering temperature (K)	a (Å)	c (Å)
ScMnO ₃	129		5.833	11.17
YMnO ₃	70	920	6.139	11.39
HoMnO ₃	76	873	6.142	11.42
ErMnO ₃	78	833	6.112	11.40
TmMnO ₃	86	>573	6.092	11.37
YbMnO ₃	87	993	6.062	11.36
LuMnO ₃	95	>750	6.042	11.37

Our samples

 $YMnO_3\Gamma_1$

 $(YEr)MnO_{3}\Gamma_{1}+\Gamma_{2}(YLu)MnO_{3}$

 $ErMnO_3$ Γ_2 $LuMnO_3$

Y(MnX)O₃, TmMnO₃ $\Gamma_1 + \Gamma_2$ Pressure effect, Isotope effect

KAERI

G.A. Smolenskii and I.E. Chupis, Sov. Phys. Usp. 25, 475 (1982)

http://www.kaeri.re.kr

Korea Atomic Energy

Research Institute

Possible magnetic structure to be obtained symmetry analysis

-Magnetic basis function studies using MODY and BasIreps program.

-Space group : P6₃cm(No.185)

-position of magnetic atom: Mn(x,0,0) -wave vector k =(0,0,0)

Wyckoff Positions of Group 185 (P63cm)

	Multiplicity	Wyckoff letter	Site symmetry	Coordinates			
	12	d	1	$\begin{array}{llllllllllllllllllllllllllllllllllll$			
Mn,O1,	02 6	c	m	(x,0,z) (0,x,z) (-x,-x,z) (-x,0,z+1/2) (0,-x,z+1/2) (x,x,z+1/2)			
Y2,04	4	b	3	(1/3,2/3,z) (2/3,1/3,z+1/2) (1/3,2/3,z+1/2) (2/3,1/3,z)			
¥1,03	2	a	3.m	(0,0,z) (0,0,z+1/2)			

Steps for magnetic structure determination using powder diffraction

Step

Propagation vector(s) SuperCell

Symmetry Analysis *Baslreps, MODY, SARAh*

Magnetic structure solution (Sim. Ann.) *FullProf*

NIST, July 2007

http://www.kaeri.re.kr

Korea Atomic Energy Research Institute

Input

Peak positions of (magnetic reflections Cell parameters

21

Possible magnetic structure of hexagonal manganites

decomposition of the six irreducible representation $\Gamma = \Gamma_1 + 2 \Gamma_2 + 2 \Gamma_3 + \Gamma_4 + 3 \Gamma_5 + 3 \Gamma_6$

Repr.	Basis	6c site							
irred.	Vector	(x, 0, 0)	(-x+1, 0, 1/2)	(0, x, 0)	(0, -x+1, 1/2)	(-x+1, -x+1, 0)	(x, x, 1/2)		
Γ_1	V ² ₁	(120)	(-1 -2 0)	(-2 -1 0)	(2 1 0)	(1 -1 0)	(-1 1 0)		
T	V ¹ ₁	(1 0 0)	(-1 0 0)	(0 1 0)	(0 -1 0)	(-1 -1 0)	(1 1 0)		
12	V ¹ ₂	(0 0 1)	(0 0 1)	(0 0 1)	(0 0 1)	(0 0 1)	(0 0 1)		
En alt	V ⁴ 1	(1 0 0)	(1 0 0)	(0 1 0)	(0 1 0)	(-1 -1 0)	(-1 -1 0)		
13	V ⁴ ₂	(001)	(0 0 -1)	(0 0 1)	(0 0 -1)	(0 0 1)	(0 0 -1)		
Γ_4	V ³ 1	(1 2 0)	(1 2 0)	(-2 -1 0)	(-2 -1 0)	(1 -1 0)	(1 -1 0)		

Repr.	Basis			6c s	site				+	
irred.	Vector	(x, 0, 0)	(-x+1, 0, 1/2)	(0, x, 0)	(0, -x+1, 1/	2) (-	x+1, -x	+1, 0) (x, 2	(, 1/2) + +	
	v 1	(120,			(2 1 0)					
Name	Мо	m(sMo)	Phi(sPhi)	Tet(sTet)	MF	Phas a	sMP	has		
	Μ	x (sMx)	My(sMy)	Mz(sMz)				7–∩・	Mn1 Mn3	Mn5
Mn1	3.314	(0.032)	90.000(0.000)	90.000(0.0	00) 0.	0000(0)	Z=0, Z=1/	2;Mn2,Mr	14, Mn6
	1.914(0.019)	3.827(0.037)	0.000(0.000	0)					
Mn2	3.314	(0.032)	270.000(0.000) 90.000(0.(000) 0	.0000(0)	120o	, trangl	e
	-1.914	(0.019)	-3.827(0.037)	0.000(0.00)0)			:Mn2	, Mn4, Mn6	
Mn3	3.314	(0.032)	210.000(0.000) 90.00 0/ 101(000) 0	.0000(0)			
	-3.827	0.037)	-1.914(0.019)	0.000(0.00)	0)			Mi	15	Mag
Mn4	3 314	(0.032)	390.000/.0.000		000) 0	0000(0)			
1111-4	0.014	(0.052)				.0000(0)		/	
	3.827(0.037)	1.914(0.019)	0.000(0.000	0)			Mn4		
Mn5	3.314	(0.032)	330.000(0.000) 90.000(0.0	000) 0	.0000(0)	V		Mn3
	1.914(0.019)	-1.914(0.019)	0.000(0.000	0)					1
Mn6	3.314	0.032)	510.000(0.000)	90.000(0.0	00) 0.	0000(0)	Mn 1	1	Mn6
	-1.914(0.019)	1.914(0.019)	0.000(0.000	0)			KAERI	Korea Ato Research	omic Energy Institute

Magnetic structure

Possible magnetic structure of hexagonal manganites

$\Gamma = \Gamma_1 + 2 \Gamma_2 + 2 \Gamma_3 + \Gamma_4 + 3 \Gamma_5 + 3 \Gamma_6$

Repr.	Basis	6c site						
irred.	Vector	(x, 0, 0)	(-x+1, 0, 1/2)	(0, x, 0)	(0, -x+1, 1/2)	(-x+1, -x+1, 0)	(x, x, 1/2)	
Γ_1	V ² ₁	(120)	(-1 -2 0)	(-2 -1 0)	(2 1 0)	(1 -1 0)	(-1 1 0)	
Г	V ¹ ₁	(1 0 0)	(-1 0 0)	(0 1 0)	(0 -1 0)	(-1 -1 0)	(1 1 0)	
1 ₂	V ¹ ₂	(0 0 1)	(0 0 1)	(0 0 1)	(0 0 1)	(0 0 1)	(0 0 1)	
	V ⁴ ₁	(1 0 0)	(1 0 0)	(0 1 0)	(0 1 0)	(-1 -1 0)	(-1 -1 0)	
	V ⁴ ₂	(001)	(0 0 -1)	(0 0 1)	(0 0 -1)	(0 0 1)	(0 0 -1)	
T	V ³ 1	(1 2 0)	(1 2 0)	(-2 -1 0)	(-2 -1 0)	(1 -1 0)	(1 -1 0)	

http://www.kaeri.re.kr

Refinement results of YMnO₃

Summary : Magnetic Structure of Hexagonal Manganites

	$\Gamma_1 \text{ or } \Gamma_3$	$\Gamma_2 \text{ or } \Gamma_4$	$\Gamma_1 + \Gamma_2$
YMnO ₃	Ο		
ErMnO ₃		0	
LuMnO ₃		0	
(YEr)MnO ₃	AL		0
(YLu)MnO ₃			0
YMnO ₃ under pressure			0
Y(XMn)O ₃		17791 BAR	O

2nd Neutron diffraction using Temp & irradiation studies

Amorphous–crystalline state transformation induced by annealing in R2Fe14B (R = Nd, Er) compounds

Nd2Fe14B compound possess record values of maximal magnetic energy product

Annealing effects

Fig. 1. Evolution of observed neutron powder diffraction patterns of the Er2Fe14B alloy with annealing temperature.

http://www.kaeri.re.kr

Table 1

Lattice constants *a*, *b*, *c* and unit cell volume *V*, coordinates of positions (space group $P4_2/mnm$), the average Er- and Fe-ion magnetic moments μ_{λ}^{Er} and μ_{λ}^{ee} , magnetization per formula unit *M*, contents of the Nd₂Fe₁₄B-type and α -Fe phases, agreement factor of magnetic structure R_{Bragg}^{ee} and χ^2 for the crystalline and annealed Er₂Fe₁₄B samples at room temperature.

Structural parameter	Sample				
	Initial crystalline	Annealed at $T_{an} = 993 \text{ K}$			
a,b (nm)	0.8744(1)	0.8725(1)			
c (nm)	1.1968(2)	1.1973(2)			
$V(nm^3)$	0.9143(5)	0.9116(5)			
Er, 4f: x	0.273(1)	0.265(1)			
Er, 4g: x	0.147(1)	0.141(1)			
Fe, 4e: z	0.112(1)	0.116(1)			
Fe, 8j ₁ : x	0.097(1)	0.097(1)			
Z	0.201(1)	0.203(1)			
Fe, 8j ₂ : x	0.318(1)	0.316(1)			
Z	0.249(1)	0.247(1)			
Fe, 16k1: x	0.222(1)	0.224(1)			
y	0.567(1)	0.566(1)			
Z	0.127(1)	0.128(1)			
Fe, 16k ₂ : x	0.036(1)	0.035(1)			
y	0.360(1)	0.358(1)			
z	0.170(1)	0.171(1)			
B, 4g: x	0.636(2)	0.630(2)			
$\mu_{\rm v}^{Er}(\mu_{\rm B})$	-4.1(1)	-3.6(2)			
$\mu_{\rm Y}^{\rm Fe}(\mu_{\rm B})$	1.9(1)	1.8(1)			
$M(\mu_{\rm B})$	18.4(3)	17.8(4)			
Nd ₂ Fe ₁₄ B-phase, weight%	98.0	84.0			
α-Fe, weight%	2.0	16			
$R_{\text{Branner}}^{m}(\%)$	5.5	7.9			
χ^2	4.46	4.03			

Annealing effects

Fig. 3. Hysteresis loops for Er2Fe14B at (a) 393 K and (b) 958 K.

Fig. 4. Dependencies of (a) magnetization and (b) coercive field of the Er2Fe14B on annealing temperature.

KAERI R

Annealing effects

Fig. 5. Evolution of observed neutron powder diffraction patterns of the Nd2Fe14B alloy with annealing temperature

Fig. 6. Dependencies of (a) magnetization and (b) coercive field of the Nd2Fe14B on annealing temperature.

KAERI Res

Neutron irradiation

 $(30)_{C}(HV)_{W} = \begin{pmatrix} 100 \\ 50 \\ -50 \\ -100 \\ -2.0 \\ -1.5 \\ -1.0 \\ -1.5 \\ -1.0 \\ -0.5 \\ 0.0 \\ 0.5 \\ 1.0 \\ 1.5 \\ 2.0 \\ -0.5 \\ 0.0 \\ 0.5 \\ 1.0 \\ 1.5 \\ 2.0 \\ -0.5 \\ -0.0 \\ -0.5 \\ 0.0 \\ -0.5 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -0.0 \\ -$

Neutron diffraction patterns of the Nd12Fe82B6 sample at room temperature before (a) and after (b) neutron irradiation. Magnetization curves of the Nd12Fe82B6 sample at room temperature before (open circles) and after (filled circles) neutron irradiation.

3rd example for neutron powder diffraction

Incommensurate magnetic structure

Magnetic phase transition in TbNi₅: bulk properties and neutron diffraction studies

Seongsulee *et al.* JETP Letters, Vol. **82**, (2005) A.P. Vokhmyanin *et al.* JMMM accepted (2005) Seongsulee *et al.* Europhys. Lett., **62**, 350 (2003)

Single crystal neutron diffraction the double-axis E-4 diffractometer at the BENSC, Hahn-Meitner Institute Germa

Korea Atomic Energy Research Institute

http://www.kaeri.re.kr

Neutron diffraction

Space group : hexagonal P6/mmm a=4.8998Å c=3.9599Å

Refinement results

FAN-like magnetic structure

FAN-like magnetic structure

$$\vec{S}_{nj} = \vec{S}_{0j} \cdot \exp(i\vec{k} \cdot \vec{t}_n)$$
$$\tau = \frac{2\pi}{c} (0, 0, 0.018)$$

phase(between 1st and 2nd atom) = $2\pi\tau \approx 7^{\circ}$

magnetic unit cell along c = 200 A

Reason of large magnetic unit cell

1st: magnetic anisotropy energy >> exchange energy 2nd: smaller magnetic anisotropy energy in the basal plane

Crystal unitcell

Magnetic unitcell

Bulk properties: single crystal: magnetic structure

Neutron diffraction

Bulk properties: single crystal: magnetic structure

http://www.kaeri.re.kr

Neutron diffraction is very powerful and unique experiment tool for crystal and magnetic structure studies.

The reasonable neutron diffraction data and good refinement results should give us the clue of finding interesting physics of our system!

Thank you for your attention.

Korea Atomic Energy Research Institute

